Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Threonine requirements

Fig. 38.5. Summary of the sources of NH4 for the urea cycle. All of the reactions are irreversible except glutamate dehydrogenase (GDH). Only the dehydratase reactions, which produce NH4 from serine and threonine, require pyridoxal phosphate as a cofactor. The reactions that are not shown occurring in the muscle or the gut can all occur in the liver, where the NH4 generated can be converted to urea. The purine nucleotide cycle of the brain and muscle is further described in Chapter 41. Fig. 38.5. Summary of the sources of NH4 for the urea cycle. All of the reactions are irreversible except glutamate dehydrogenase (GDH). Only the dehydratase reactions, which produce NH4 from serine and threonine, require pyridoxal phosphate as a cofactor. The reactions that are not shown occurring in the muscle or the gut can all occur in the liver, where the NH4 generated can be converted to urea. The purine nucleotide cycle of the brain and muscle is further described in Chapter 41.
Pratt EL, Snyderman S, Cheung MW, Norton P, Holt IE. The threonine requirement of the normal infant. J Nutn 1984 11 231-52. [Pg.71]

Borgonha S, Regan MM, Oh SH, Condon M, Young VR Threonine requirement of healthy adults, derived with a 24-h indicator amino acid balance technique. Am J Clin Nutr 2002 75 698-704. [Pg.341]

The change in threonine requirement from early to late pregnancy in... [Pg.149]

Table 1. Threonine requirement of 50W5 in early and late gestation based on indicator amino acid and plasma threonine concentration. [Pg.150]

Blank B., 2009. Studies on the threonine requirement in growing pigs. PhD thesis, Christian-Albrechts-University of Kiel, Kiel, Germany, 55 pp. [Pg.376]

Thong, H.T. and F. Liebert, 2004. Potential for protein deposition and threonine requirement of modem genotype barrows fed graded levels of protein with threonine as the limiting amino acid. J. Anim. Physiol, a. Anim. Nutr. 88,196-203. [Pg.444]

Many kinds of amino acids (eg, L-lysine, L-omithine, t-phenylalanine, L-threonine, L-tyrosine, L-valine) are accumulated by auxotrophic mutant strains (which are altered to require some growth factors such as vitamins and amino acids) (Table 6, Primary mutation) (22). In these mutants, the formation of regulatory effector(s) on the amino acid biosynthesis is genetically blocked and the concentration of the effector(s) is kept low enough to release the regulation and iaduce the overproduction of the corresponding amino acid and its accumulation outside the cells (22). [Pg.289]

Cottonseed. When compared with FAO/WHO/UNU essential amino acid requirements (see Table 3), cottonseed proteins are low in lysine, threonine, and leucine for 2 to 5-year-old children, yet meet all requirements for adults. [Pg.301]

Pea.nuts, The proteins of peanuts are low in lysine, threonine, cystine plus methionine, and tryptophan when compared to the amino acid requirements for children but meet the requirements for adults (see Table 3). Peanut flour can be used to increase the nutritive value of cereals such as cornmeal but further improvement is noted by the addition of lysine (71). The trypsin inhibitor content of raw peanuts is about one-fifth that of raw soybeans, but this concentration is sufficient to cause hypertrophy (enlargement) of the pancreas in rats. The inhibitors of peanuts are largely inactivated by moist heat treatment (48). As for cottonseed, peanuts are prone to contamination by aflatoxin. FDA regulations limit aflatoxin levels of peanuts and meals to 100 ppb for breeding beef catde, breeding swine, or poultry 200 ppb for finishing swine 300 ppb for finishing beef catde 20 ppb for immature animals and dairy animals and 20 ppb for humans. [Pg.301]

Sundower Seed. Compared to the FAO/WHO/UNU recommendations for essential amino acids, sunflower proteins are low in lysine, leucine, and threonine for 2 to 5-year-olds but meet all the requirements for adults (see Table 3). There are no principal antinutritional factors known to exist in raw sunflower seed (35). However, moist heat treatment increases the growth rate of rats, thereby suggesting the presence of heat-sensitive material responsible for growth inhibitions in raw meal (72). Oxidation of chlorogenic acid may involve reaction with the S-amino group of lysine, thus further reducing the amount of available lysine. [Pg.301]

Mutation. For industrial appHcations, mutations are induced by x-rays, uv irradiation or chemicals (iiitrosoguanidine, EMS, MMS, etc). Mutant selections based on amino acid or nucleotide base analogue resistance or treatment with Nystatin or 2-deoxyglucose to select auxotrophs or temperature-sensitive mutations are easily carried out. Examples of useful mutants are strains of Candida membranefaciens, which produce L-threonine Hansenu/a anomala, which produces tryptophan or strains of Candida lipolytica that produce citric acid. An auxotrophic mutant of S. cerevisiae that requires leucine for growth has been produced for use in wine fermentations (see also Wine). This yeast produces only minimal quantities of isoamyl alcohol, a fusel oil fraction derived from leucine by the Ehrlich reaction (10,11). A mutant strain of bakers yeast with cold-sensitive metaboHsm shows increased stabiUty and has been marketed in Japan for use in doughs stored in the refrigerator (12). [Pg.387]

The a subunits, for which two isoforms exist in mammals (al, a2), contain conventional protein serine/threonine kinase domains at the N-terminus, with a threonine residue in the activation loop (Thr-172) that must be phosphorylated by upstream kinases (see below) before the kinase is active. The kinase domain is followed by an autoinhibitory domain, whose effect is somehow relieved by interaction with the other subunits. The C-terminal domain of the a subunit is required for the formation of a complex with the C-terminal domain of the (3 subunit, which in turn mediates binding to the y subunit. The al and a2 catalytic subunit isoforms are widely distributed, although a2 is most abundant in muscle and may be absent in cells of the endothelial/hemopoietic lineage. [Pg.69]

Not all proteins are nutritionally equivalent. Mote of some than of others is needed to maintain nittogen balance because different proteins contain different amounts of the various amino acids. The body s requirement is for specific amino acids in the correct proportions to replace the body proteins. The amino acids can be divided into two groups essential and nonessential. There are nine essential or indispensable amino acids, which cannot be synthesized in the body histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. If one of these is lacking or inadequate, then—regardless of the total intake of protein—it will not be possible to maintain nitrogen balance since there will not be enough of that amino acid for protein synthesis. [Pg.480]

This intermediate MAPK activator (MAPK kinase, MAPKK) is a 45 kDa phosphoprotein capable of phosphorylating MAPK on serine/threonine and tyrosine residues (Matsuda et al., 1992 Nakielny et al., 1992a Kosako et al., 1993). Like MAPK, the activity of MAPKK is regulated by phosphorylation. During oocyte maturation MAPKK is phosphorylated on threonine residues (Kosako et al., 1992), and this phosphorylation is required for its activity (Ahn et al., 1991 Gomez and Cohen, 1991 Kosako et al., 1992 Matsuda et al., 1992). MPF can activate both MAPKK and MAPK in vitro, with the activation of MAPK lagging behind that of MAPKK however, MPF cannot activate either purified MAPKK or MAPK that has been dephosphorylated by phosphatases (Matsuda et al., 1992). MAPKK and MAPK are therefore believed to function downstream of MPF (Fig. 3). [Pg.21]

Gartner, A., Nasmyth, K., and Ammerer, G. (1992). Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6 1280-1292. [Pg.40]

Lorca, T., Labbe, J-C., Devault, A., Fesquet, Capony, J-P., Cavadore, J-C., Le Bouffant, F., and Doree, M. (1991). Dephosphorylation of cdc2 on threonine is required for cdc2 kinase inactivation and normal anaphase. EMBO J. 11 2381-2390. [Pg.44]

The second method also relies on site-specific chemical modification ofphosphoproteins (Oda et al., 2001). It involves the chemical replacement of phosphates on serine and threonine residues with a biotin affinity tag (Fig. 2.7B). The replacement reaction takes advantage of the fact that the phosphate moiety on phosphoserine and phosphothreonine undergoes -elimination under alkaline conditions to form a group that reacts with nucleophiles such as ethanedithiol. The resulting free sulfydryls can then be coupled to biotin to create the affinity tag (Oda et al., 2001). The biotin tag is used to purify the proteins subsequent to proteolytic digestion. The biotinylated peptides are isolated by an additional affinity purification step and are then analyzed by mass spectrometry (Oda et al., 2001). This method was also tested with phosphorylated (Teasein and shown to efficiently enrich phosphopeptides. In addition, the method was used on a crude protein lysate from yeast and phosphorylated ovalbumin was detected. Thus, as with the method of Zhou et al. (2001), additional fractionation steps will be required to detect low abundance phosphoproteins. [Pg.20]

The events following the activation of Ras ultimately led to the activation of MAP kinase, followed by activation of expression of immediate-early response genes. Activation of MAP kinase requires two intermediate steps, both of which involve a phosphorylation (Figure 8.5). The immediate activator of MAP kinase is MAP-kinase-kinase (also called MAP kinase-ERK kinase, or MEK), a most unusual enzyme that phosphorylates MAP kinase on both a threonine (T) and a tyrosine (Y) residue. These are in the target-sequence seven residues (LTEYVATRWYRAPE) (Table 8.1)... [Pg.243]


See other pages where Threonine requirements is mentioned: [Pg.176]    [Pg.204]    [Pg.176]    [Pg.204]    [Pg.540]    [Pg.293]    [Pg.71]    [Pg.322]    [Pg.511]    [Pg.51]    [Pg.260]    [Pg.466]    [Pg.487]    [Pg.423]    [Pg.235]    [Pg.310]    [Pg.411]    [Pg.611]    [Pg.643]    [Pg.974]    [Pg.198]    [Pg.520]    [Pg.70]    [Pg.853]    [Pg.350]    [Pg.1247]    [Pg.43]    [Pg.5]    [Pg.21]    [Pg.22]    [Pg.130]    [Pg.146]   
See also in sourсe #XX -- [ Pg.28 , Pg.31 ]




SEARCH



Threonin

Threoninal

Threonine

© 2024 chempedia.info