Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiophene mechanism

By treatment with anhydrous aluminium chloride (Holmes and Beeman, 1934). Ordinary commercial, water-white benzene contains about 0 05 per cent, of thiophene. It is first dried with anhydrous calcium chloride. One litre of the dry crude benzene is shaken vigorously (preferably in a mechanical shaking machine) with 12 g. of anhydrous aluminium chloride for half an hour the temperature should preferably be 25-35°. The benzene is then decanted from the red liquid formed, washed with 10 per cent, sodium hydroxide solution (to remove soluble sulphur compounds), then with water, and finally dried over anhydrous calcium chloride. It is then distilled and the fraction, b.p. 79-5-80-5°, is collected. The latter is again vigorously shaken with 24 g. of anhydrous aluminium chloride for 30 minutes, decanted from the red liquid, washed with 10 per cent, sodium hydroxide solution, water, dried, and distilled. The resulting benzene is free from thiophene. [Pg.173]

Into a 500-ml. bolt head or three-necked fiask, provided with a mechanical stirrer and a reflux condenser, place 60 g. (69 ml.) of thiophene-free toluene (Section 11,47,16) and 60 g. (33 ml.) of concentrated sulphuric acid. Heat the mixture, with stirring, in an oil bath maintained at... [Pg.550]

Treatment of 192 with dimethyl acetylenedicarboxylate yields a thiophene derivative (195) when R = Ph and a 2-p3Tidone (1S>6) derivative when R = H (Scheme 100). The proposed mechanism involves the formation of a mesoionic derivative (193) initially further dipolar addition yields adduct 194, the decomposition of which is dependent on the R substituent as described for related compounds (435). ... [Pg.426]

Polyheterocycles. Heterocychc monomers such as pyrrole and thiophene form hiUy conjugated polymers (4) with the potential for doped conductivity when polymerization occurs in the 2, 5 positions as shown in equation 6. The heterocycle monomers can be polymerized by an oxidative coupling mechanism, which can be initiated by either chemical or electrochemical means. Similar methods have been used to synthesize poly(p-phenylenes). [Pg.36]

The light-induced rearrangement of 2-phenyl- to 3-phenyl-thiophene may occur by a similar mechanism an equilibrium between the bicyclic intermediate (26) and the cyclopro-penylthioaldehyde (27) has been suggested (Scheme 2). The formation of IV-substituted pyrroles on irradiation of either furans or thiophenes in the presence of a primary amine supports this suggestion (Scheme 3). Irradiation of 2-phenylselenophene yields, in addition to 3-phenylselenophene, the enyne PhC=C—CH=CH2 and selenium. Photolysis of 2-phenyltellurophene furnishes solely the enyne and tellurium (76JOM(108)183). [Pg.42]

Halogens react with benzo[6]furan by an addition-elimination mechanism to give 2- and 3-substituted products (76JCS(P2)266). Treatment of benzo[6]thiophene with chlorine or bromine in acetic acid gives predominantly 3-substituted products (71JCS(B)79). 2,2,3,3,4,5,6,7-Octachloro-2,3-dihydrobenzothiophene is obtained when benzo[6]thio-phene is treated with chlorine in the presence of 1 mole of iodine (80JOC2l5l). [Pg.51]

Pyrroles, furans and thiophenes undergo photoinduced alkylation with diarylalkenes provided that the alkene and the heteroaromatic compound have similar oxidation potentials, indicating that alkylation can occur by a non-ionic mechanism (Scheme 20) (81JA5570). [Pg.53]

Acyl-pyrroles, -furans and -thiophenes in general have a similar pattern of reactivity to benzenoid ketones. Acyl groups in 2,5-disubstituted derivatives are sometimes displaced during the course of electrophilic substitution reactions. iV-Alkyl-2-acylpyrroles are converted by strong anhydrous acid to A-alkyl-3-acylpyrroles. Similar treatment of N-unsubstituted 2- or 3-acyIpyrroles yields an equilibrium mixture of 2- and 3-acylpyrroles pyrrolecarbaldehydes also afford isomeric mixtures 81JOC839). The probable mechanism of these rearrangements is shown in Scheme 65. A similar mechanism has been proposed for the isomerization of acetylindoles. [Pg.73]

JOC1537). The mechanisms of these transformations may involve homolytic or heterolytic C —S bond fission. A sulfur-walk mechanism has been proposed to account for isomerization or automerization of Dewar thiophenes and their 5-oxides e.g. 31 in Scheme 17) (76JA4325). Calculations show that a symmetrical pyramidal intermediate with the sulfur atom centered over the plane of the four carbon atoms is unlikely <79JOU140l). Reactions which may be mechanistically similar to that shown in Scheme 18 are the thermal isomerization of thiirane (32 Scheme 19) (70CB949) and the rearrangement of (6) to a benzothio-phene (80JOC4366). [Pg.143]

The rearrangement (automerization) of Dewar thiophene 5-oxide (61), observed by NMR, occurs so much more rapidly than that of the corresponding episulfide that special mechanisms have been invoked. The one which involves a zwitterionic intermediate (Scheme 108) is favored over a pseudopericyclic sulfur-walk mechanism in which the electrons of the carbon-sulfur o--bond and the pair of electrons on sulfur exchange places as the sulfur atom migrates around the ring (80JA2861). [Pg.169]

Lastly, a termolecular cydization of unknown mechanism provides a useful synthesis of tetrakis(trifluoromethyl)thiophene 60 (equation 60)... [Pg.817]

The mechanism of the Fiesselmann reaction between methylthioglycolate and a,P-acetylenic esters proceeds via consecutive base-catalyzed 1,4-conjugate addition reactions to form thioacetal Enolate formation, as a result of treatment with a stronger base, causes a Dieckmann condensation to occur providing ketone 8. Elimination of methylthioglycolate and tautomerization driven by aromaticity provides the 3-hydroxy thiophene dicarboxylate 9. [Pg.185]

Based on these observations, it is likely that the mechanism involves initial formation of thione 3 (X = O or S), which is followed by tautomerization to 4 and cyclization to 5. Aromaticity drives the facile elimination of either H2O or H2S resulting in the thiophene product. [Pg.208]

The mechanism for the redistribution in oxidation states begins similarly to that of the Paal thiophene synthesis. However, upon formation of dithione 38, nucleophilic addition of one thiocarbonyl into the other produces the intermediate zwitterion 39. A 1,3-tautomerization of hydrogen then gives... [Pg.214]

Quantum-mechanical calculations on substituted thiophenes are still more difficult and localization energies and electronic charges have been calculated only for 2- and 3-nitrothiophene. ... [Pg.4]

This activation of the ortho position is most strikingly illustrated in the reactivity of 2,5-dimethylthiophene, which competitive experiments have shown to undergo the SnCb-catalyzed Friedel-Crafts reaction more rapidly than thiophene and even 2-methylthiophene. The influence of the reagent on the isomer distribution is evident from the fact that 2-methoxythiophene is formylated and bromi-nated (with A -bromosuccinimide) only in the 5-position. Similarly, although 3-bromo-2-methylthiophene has been detected in the bromi-nation of 2-methylthiophene with bromine, only the 5-isomer (besides some side-chain bromination) is obtained in the bromination of alkylthiophenes with A -bromosuccinimide. ° However, the mechanism of the latter type of bromination is not established. No lines attributable to 2-methyl-3-thiocyanothiophene or 2-methyl-3-chIoro-thiophene could be detected in the NMR spectra of the substitution products (5-isomers) obtained upon thiocyanation with thiocyanogen or chlorination with sulfuryl chloride. 2-Methyl- and 2-ethyl-thiophene give, somewhat unexpectedly, upon alkylation with t-butyl chloride in the presence of Feds, only 5-t-butyl monosubstituted and... [Pg.48]

This is of great preparative importance as the Grig-nard reagent of 3-bromosubstituted thiophenes and the dibromothio-phenes can be obtained only by the entrainment method and with inferior The mechanism of the entrainment reaction... [Pg.76]

In the desulfurization of 3-substituted thiophenes several stereoisomers may be formed in certain cases. Both meso and racemic compounds have been obtained from the desulfurization of 3,4-diaryl-substituted thiophenes. It is claimed, however, that only meso, -diphenyladipic acid is obtained upon desulfurization of 3,4-di-phenyl-2,5-thiophenedicarboxylic acid and only di-isoleucin from 3-thienylglycine. The formation of small amounts of dimeric products in the desulfurization has been discussed with reference to the mechanism of this reaction. ... [Pg.116]

Prediction of tautomeric equilibria by a quantum mechanical continuum model of solvation Tautomerism of thiophenes... [Pg.87]

Tlie thermally stable and hence less reactive dithiete 172 reacted with DMAD under forcing conditions to give thiophenes 200 and 201 through an uncertain mechanism (90BCJ1026 ... [Pg.258]

Both R and MMA radicals are found to be responsible for the photoinitiation process. Chaturvedi and coworkers [54,55] introduced phenyl dimethyl sulfonium-ylide cupric chloride and chromium thiophene carboxylate as the photoinitiator of styrene and MMA. No reaction mechanism was given for these systems. [Pg.252]

Much of the kinetic work in this category has already been described under the section relating to studies of mechanism. Additional data was obtained by Ols-son569, who measured rate coefficients (lO7 ) for dedeuteration and detritiation of thiophen by 57.02 wt. % sulphuric acid at 24.6 °C as follows [2-2H], 3,890 [2-3H], 2,000 [3-2H], 3.72 [3-3H], 2.20. The ratio of reactivities at the 2 and 3 positions (ca. 1,000) is in excellent agreement (bearing in mind the larger p-factor usually obtained with trifluoroacetic acid) with the value of ca. 1,250 which may be deduced from the data in Table 158. The ratio of dedeuteration to detritiation is 1.96 at the 2 position and 1.70 at the 3 position and thus decreases with decreasing reactivity of the reaction site. [Pg.261]

The most widely accepted mechanism for the anodic polymerization of pyrroles and thiophenes involves the coupling of radical cations produced at the electrode (Scheme l).5 The oligomers so produced, which are more easily oxidized than the monomer, are rapidly oxidized and couple with each other and with monomer radical cations. Coupling occurs predominantly at the a-positions (i.e., 2- and 5-position),5 and so pyrroles and thiophenes with substituents in either of these positions do not undergo anodic polymerization. The reaction is stoichiometric in that two... [Pg.555]

One also obtains analogous findings with trace-crossing effects for the electropolymerization of thiophene and pyrrole. This cannot be explained by a simple linear reaction sequence, as presented in Scheme I, because it indicates competing homogeneous and heterogeneous electron transfer processes. Measurements carried out in a diluted solution of JV-phenylcarbazole provide a more accurate insight into the reaction mechanism (Fig. 2). [Pg.10]

The exact mechanisms of the Raney nickel reactions are still in doubt, though they are probably of the free radical type. It has been shown that reduction of thiophene proceeds through butadiene and butene, not through 1-butanethiol or other sulfur compounds, that is, the sulfur is removed before the double bonds are reduced. This was demonstrated by isolation of the alkenes and the failure to isolate any potential sulfur-containing intermediates. [Pg.532]

Heterocyclic compounds, too, have nonequivalent positions, and the principles are similar, in terms of mechanism and rate data is available. Furan, thiophene. [Pg.688]

Figure 9.8. Global reaction mechanism for the hydrodesulfurization of thiophene, in which the first step involves hydrogenation of the unsaturated ring, followed by cleavage ofthe C-S bond in two steps. Butadiene is assumed to be the first sulfur-free product,... Figure 9.8. Global reaction mechanism for the hydrodesulfurization of thiophene, in which the first step involves hydrogenation of the unsaturated ring, followed by cleavage ofthe C-S bond in two steps. Butadiene is assumed to be the first sulfur-free product,...

See other pages where Thiophene mechanism is mentioned: [Pg.173]    [Pg.739]    [Pg.837]    [Pg.222]    [Pg.19]    [Pg.269]    [Pg.61]    [Pg.513]    [Pg.700]    [Pg.11]    [Pg.66]    [Pg.73]    [Pg.74]    [Pg.91]    [Pg.26]    [Pg.210]    [Pg.282]    [Pg.302]    [Pg.686]    [Pg.746]    [Pg.11]    [Pg.12]    [Pg.713]    [Pg.941]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Pyrolysis mechanisms thiophene

© 2024 chempedia.info