Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin film heat transfer, evaporating

E. L. Lustenader, R. Richter, and F. J. Neugebauer, The Use of Thin Films for Increasing Evaporation and Condensation Rates in Process Equipment, J. Heat Transfer (81) 297-307,1959. [Pg.856]

The relationships developed for these two cases are different and will be discussed below. Equipment using falling film heat transfer can be classified into vertical and horizontal systems. The vertical systems can include falling films on the inside or outside of tubes, or alternatively (in plate-type evaporators) on vertical flat plates. Generally, the liquid films are sufficiently thin to be treated as equivalent to the flat plate case for all of these configurations. Another important case is that of falling films on tube banks, as illustrated in Fig. 15.141 the... [Pg.1126]

Economic and process considerations usually dictate that agitated thin-film evaporators be operated in single-effect mode. Veiy high temperature differences can then be used many are heated with Dowtherm or other high-temperature media. This permits achieving reasonable capacities in spite of the relatively low heat-transfer coefficients and the small surface that can be provided in a single tube [to about 20 m" (200 ft")]. The structural need for wall thicknesses of 6 to 13 mm (V4 to V2. in) is a major reason for the relatively low heat-transfer coefficients when evaporating water-like materials. [Pg.1141]

In high heat flux (heat transfer rate per unit area) boilers, such as power water tube (WT) boilers, the continued and more rapid convection of a steam bubble-water mixture away from the source of heat (bubbly flow), results in a gradual thinning of the water film at the heat-transfer surface. A point is eventually reached at which most of the flow is principally steam (but still contains entrained water droplets) and surface evaporation occurs. Flow patterns include intermediate flow (churn flow), annular flow, and mist flow (droplet flow). These various steam flow patterns are forms of convective boiling. [Pg.6]

Evaporation can be performed directly from reactors or kettles provided that substances are thermally stable. Such evaporation is time consuming because of the low heat-transfer surface area per unit volume. In the case of temperature sensitive materials, the residence time in the evaporator must be short and the temperature should be as low as possible. Consequently, continuous vacuum evaporators with a short residence time should be used to treat such materials. Falling-film (thin-film) evaporators are suitable to perform such operations. A typical falling-film evaporators is shown in Fig. 7.2-14. Centrifugal evaporators are also commonly used. [Pg.455]

If long distillation time is a problem, one can move to continuous distillation with conventional shell and tube heaters accompanied by a typical column bottom (often called a sump) which is a high temperature holdup, or better yet a short path evaporator (falling film, thin film, or wiped film) with usually a smaller receiver (called an accumulator in this case). The most chemical damage is in the thin liquid film at the heat transfer surface, so the short path evaporators do the least thermal damage. [Pg.317]

Thin-film and surface renewal evaporators are mostly applied to materials with medium to high viscosity, or to high-boiling contaminated mixtures. A typical thin-film evaporator employs a unique rotor with an array of discrete, plowlike blades attached to the rotor core. The blades transport the viscous concentrate or melt through the evaporator while simultaneously forming films to facilitate heat and mass transfer. [Pg.576]

T iquid films, whether in the form of natural falling films or in the more advanced form of mechanically agitated films in thin-film apparatus, offer convenient conditions for the solution of many difficult processing problems because of the films favorable surface-to-volume ratio and good heat transfer. This is especially so with an agitated film between heating wall and film. The agitated-film principle has previously found its broadest application in thin-film evaporators. [Pg.63]

These thin-film evaporators are equipped with rotating elements that create a thin, liquid film of high turbulence along the inner surface of the heated tube (see Figure 1). Consequently, favorable heat and mass-transfer conditions (I), (2) and short residence times result owing to the small holdup (3,4). [Pg.63]

The validity of the penetration theory points out that heat transfer in an agitated viscous thin film (even in the case of evaporation) and the mass transfer are mainly effected by forced convection and continuous surface renewal. [Pg.73]

There are three basic types of devolatilization equipment that have been used for the commercial manufacture of polystyrene wiped film evaporators, devolatilizing extruders and flash evaporators. In wiped film evaporators, the polymer solution is fed into a vessel under vacuum. The solution is moved into thin films along the vessel walls by a set of rotating blades. These blades continue to move the polymer through the vessel while continually renewing the surface area. The tank walls are heated to supply the required energy for devolatilization. These units are typically mounted vertically with the polymer solution fed at the top. At the bottom is a melt pool where a gear pump transfers the melt to the next unit operation, typically pelletization. [Pg.60]

It was supposed, that for a high vapor velocity and a thin liquid film the influence of gravity is small and the correlation for up flow was used. Total boiling suppression occurs when mass quality more than 0.3 for a film thickness less than 60 pm. That value is close to the bubble departure diameter observed for flow boiling in a film. When the film thickness is smaller than the critical one, the forced convection occurs with a small heat transfer coefficient. The crisis of the heat transfer was observed for a complete liquid evaporation on a heated wall. While the mass quality less than 0.3, we have the cell or slug flow mode, so boiling is not suppressed. [Pg.262]

In confined space, the heat transfer enhancement is caused by evaporation a thin liquid film in near comer area (see Fig. 12) and dry spot formation on the channel wall. The dry spot formation in this area can explain low dependence of heat transfer coefficient on wall superheat [21]. For this case heat flux in vicinity of liquid-solid-vapor contact line has higher level due to evaporation in ultra thin film area [20]. In that way high level of heat transfer in vicinity of contact line is responsible for the heat transfer enhancement during boiling in mini-channels. The possibility of dry spot formation on the wall for water boiling in narrow annular channel was observed in [35] also. At wall superheat over 4.5 K the drying-out of liquid is responsible for decrease of heat transfer when the size of dry area becomes very large. [Pg.269]

In this work, microscale evaporation heat transfer and capillary phenomena for ultra thin liquid film area are presented. The interface shapes of curved liquid film in rectangular minichannel and in vicinity of liquid-vapor-solid contact line are determined by a numerical solution of simplified models as derived from Navier-Stokes equations. The local heat transfer is analyzed in term of conduction through liquid layer. The data of numerical calculation of local heat transfer in rectangular channel and for rivulet evaporation are presented. The experimental techniques are described which were used to measure the local heat transfer coefficients in rectangular minichannel and thermal contact angle for rivulet evaporation. A satisfactory agreement between the theory and experiments is obtained. [Pg.303]


See other pages where Thin film heat transfer, evaporating is mentioned: [Pg.15]    [Pg.1821]    [Pg.1251]    [Pg.18]    [Pg.374]    [Pg.414]    [Pg.256]    [Pg.87]    [Pg.209]    [Pg.211]    [Pg.466]    [Pg.813]    [Pg.76]    [Pg.296]    [Pg.217]    [Pg.227]    [Pg.228]    [Pg.775]    [Pg.815]    [Pg.85]    [Pg.39]    [Pg.690]    [Pg.203]    [Pg.331]    [Pg.153]    [Pg.1666]    [Pg.2455]    [Pg.2504]    [Pg.2504]    [Pg.224]    [Pg.231]    [Pg.255]    [Pg.268]    [Pg.270]   
See also in sourсe #XX -- [ Pg.15 , Pg.141 ]




SEARCH



Evaporated film

Evaporated thin films

Evaporative heat transfer

Evaporator film evaporators

Evaporators Heat transfer

Film heat transfer

Heat transfer evaporation

Thin film evaporation

Thin film evaporator

Thin-film evaporators

Transfer film

© 2024 chempedia.info