Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiazole functionalization

As expected. 2-aminothiazole is more basic (piVj, = 5.28) than thiazole (pXj = 2.52) (681. Ultraviolet absorption properties as a function of pH... [Pg.18]

In the first chapter, devoted to thiazole itself, specific emphasis has been given to the structure and mechanistic aspects of the reactivity of the molecule most of the theoretical methods and physical techniques available to date have been applied in the study of thiazole and its derivatives, and the results are discussed in detail The chapter devoted to methods of synthesis is especially detailed and traces the way for the preparation of any monocyclic thiazole derivative. Three chapters concern the non-tautomeric functional derivatives, and two are devoted to amino-, hydroxy- and mercaptothiazoles these chapters constitute the core of the book. All discussion of chemical properties is complemented by tables in which all the known derivatives are inventoried and characterized by their usual physical properties. This information should be of particular value to organic chemists in identifying natural or Synthetic thiazoles. Two brief chapters concern mesoionic thiazoles and selenazoles. Finally, an important chapter is devoted to cyanine dyes derived from thiazolium salts, completing some classical reviews on the subject and discussing recent developments in the studies of the reaction mechanisms involved in their synthesis. [Pg.599]

Chapters III to VII discuss the general properties of thiazoles having hydrocarbon and functional substituents, respectively. A special chapter (Chapter VIII) is devoted to mcso-ionic thiazoles, and Chapter IX describes the thiazolium salts and their numerous cyanine dyes derivatives. The last chapter concerns the monocyclic selenazoles. [Pg.1]

Fig. I-l. Variation of the mean v net charge of the five atoms of thiazole ring as a function of the calculation method employed. Fig. I-l. Variation of the mean v net charge of the five atoms of thiazole ring as a function of the calculation method employed.
Ultraviolet photoelectron spectroscopy allows the determination of ionization potentials. For thiazole the first experimental measurement using this technique was preformed by Salmona et al. (189) who later studied various alkyl and functional derivatives in the 2-position (190,191). Substitution of an hydrogen atom by an alkyl group destabilizes the first ionization potential, the perturbation being constant for tso-propyl and heavier substituents. Introduction in the 2-position of an amino group strongly destabilizes the first band and only slightly the second. [Pg.51]

TABLE 1-27. INFRARED FREQUENCIES OF THIAZOLE AS A FUNCTION OF THE PHYSICAL STATE AND ASSIGNMENT... [Pg.62]

The first mass spectrometric investigation of the thiazole ring was done by Clarke et al. (271). Shortly after, Cooks et al., in a study devoted to bicydic aromatic systems, demonstrated the influence of the benzo ring in benzothiazole (272). Since this time, many studies have been devoted to the influence of various types of substitution upon fragmentation schemes and rearrangements, in the case of alkylthiazoles by Buttery (273) arylthiazoles by Aune et al. (276), Rix et al. (277), Khnulnitskii et al. (278) functional derivatives by Salmona el al. (279) and Entenmann (280) and thiazoles isotopically labeled with deuterium and C by Bojesen et al. (113). More recently, Witzhum et al. have detected the presence of simple derivatives of thiazole in food aromas by mass spectrometry (281). [Pg.81]

The heat capacity of thiazole was determined by adiabatic calorimetry from 5 to 340 K by Goursot and Westrum (295,296). A glass-type transition occurs between 145 and 175°K. Melting occurs at 239.53°K (-33-62°C) with an enthalpy increment of 2292 cal mole and an entropy increment of 9-57 cal mole °K . Table 1-44 summarizes the variations as a function of temperature of the most important thermodynamic properties of thiazole molar heat capacity Cp, standard entropy S°, and Gibbs function - G°-H" )IT. [Pg.86]

TABLE 1-44. VARIATION OF SOME THERMODYNAMIC PROPERTIES OF THIAZOLE AS A FUNCTION OF TEMPERATURE (29.3)... [Pg.86]

K (66.46 e.u.) with the spectroscopic value calculated from experimental data (66.41 0.009 e.u.) (295, 289) indicates that the crystal is an ordered form at 0°K. Thermodynamic functions of thiazole were also determined by statistical thermodynamics from vibrational spectra (297, 298). [Pg.87]

Similarly, molar excess functions have been determined for various thiazole-solvent binary mixtures (Table 1-46) (307-310). [Pg.88]

A more quantitative approach to the influence of the thiazole ring on the reactivity of a lateral functional chain was made in a recent study by Noyce and Fike (383), already discussed in Section 10.4. The first-order rates of solvolysis for three isomeric 1-thiazolylethyl chlorides were determined in 80% ethanol. The order of relative reactivity observed. [Pg.146]

The reaction of a thioamide with a-halocarbonyl compounds has been applied extensively, and many thiazoles (10) with alkyl, aryl, aralkyl, or heteroaryl functional groups at the three 2-, 4-, or 5-positions have been reported (Scheme 6). [Pg.180]

In this chapter we examine in turn the properties of alkyl and aryl-thiazoles that do not possess functional groups bonded directly to the thiazole ring. The general trends are underlined, and the applications of certains thiazole compounds in such areas as polymers, flavorings, and pharmacological and agricultural chemicals are discussed. [Pg.339]

The most general pathways to thiazoles bearing such groups as alkyl, aryl, aralkyl, and alkenyl, substituted or not by functional groups, are the cyclization reactions described in Chapter II. A certain number of indirect methods also exist, though only a few examples of each are given here. Others are discussed in the following chapters, with the more important references cited here. [Pg.339]

This method has mainly been used to prepare thiazoles nonsubstituted in the 2-position and involves the replacement of a functional substituent (amino, halo, mercapto, hydroxy, or carboxy) by a hydrogen. In this way the often delicate cyclization of thioformamide can be avoided. [Pg.339]

The reactivity of alkylthiazoles possessing a functional group linked to the side-chain is discussed here neither in detail nor exhaustively since it is analogous to that of classical aliphatic and aromatic compounds. These reactions are essentially of a synthetic nature. In fact, the cyclization methods discussed in Chapter II lead to thiazoles possessing functional groups on the alkyl chain if the aliphatic compounds to be cyclized, carrying the substituent on what will become the alkyl side chain, are available. If this is not the case, another functional substituent can be introduced on the side-chain by cyclization and can then be converted to the desired substituent by a classical reaction. [Pg.340]

The acid function of an aliphatic chain bonded to a thiazole ring can be esterified. The corresponding acid chloride can also be prepared by the action of thionyl chloride, though the reaction is often accompanied by secondary reactions and gives poor yields (49, 74). [Pg.341]

Application of Snyder s theory of linear chromatographic adsorption (171) gives the variation in adsorption energy of the thiazole nitrogen atom as a function of this steric hindrance for silica and alumina (see Table III-22). These results show that alumina is more sensitive toward steric effects while silica shows a higher selectivity in the case of polar effects. [Pg.363]

These preceding properties imply that the thiazole has to be introduced in various molecules, by direct cyclization or with precursors already bearing the thiazole ring. Among these last products the clomethiazole. nitrothiazole, and aryl or alkylthiazoles with the functional group on the aryl or alkyl substituent have been widely used. [Pg.399]

Physical Chemical Characterization. Thiamine, its derivatives, and its degradation products have been fully characterized by spectroscopic methods (9,10). The ultraviolet spectmm of thiamine shows pH-dependent maxima (11). H, and nuclear magnetic resonance spectra show protonation occurs at the 1-nitrogen, and not the 4-amino position (12—14). The H spectmm in D2O shows no resonance for the thiazole 2-hydrogen, as this is acidic and readily exchanged via formation of the thiazole yUd (13) an important intermediate in the biochemical functions of thiamine. Recent work has revised the piC values for the two ionization reactions to 4.8 and 18 respectively (9,10,15). The mass spectmm of thiamine hydrochloride shows no molecular ion under standard electron impact ionization conditions, but fast atom bombardment and chemical ionization allow observation of both an intense peak for the patent cation and its major fragmentation ion, the pyrimidinylmethyl cation (16). [Pg.85]

These thiazoles are of specific interest in that they display exceptional pharmacological properties. Additionally, the unsaturated 2-aminonitrile functionality of the above thiazoles is recognized for its versatile functionality and therefore for its ensuing significance in the synthesis of heterocycles. The synthetic utility of thiazoles 13a-f is illustrated by the reactions of the unsaturated 2-aminonitrile functionality in compounds 13b and 13c with formamidine acetate, resulting in the thiazolopyrimidines 14a and 14c respectively. The synthesis of this relatively rare family of heterocycles provides a route into structurally similar bioactive compounds. ... [Pg.278]

Therapeutic Function Analgesic, antipyretic and antiinflammatory Chemical Name 4-(p-Chlorophenyl)-2-phenyl-thiazol-5-yl-acetic acid Common Name —... [Pg.634]


See other pages where Thiazole functionalization is mentioned: [Pg.222]    [Pg.222]    [Pg.192]    [Pg.506]    [Pg.120]    [Pg.409]    [Pg.33]    [Pg.48]    [Pg.67]    [Pg.77]    [Pg.82]    [Pg.168]    [Pg.1]    [Pg.5]    [Pg.116]    [Pg.872]    [Pg.98]    [Pg.18]    [Pg.23]    [Pg.192]    [Pg.271]   
See also in sourсe #XX -- [ Pg.305 ]




SEARCH



Thiazoles, functional groups among

© 2024 chempedia.info