Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiamine enzyme cofactor

The water-soluble vitamins comprise the B complex and vitamin C and function as enzyme cofactors. Fofic acid acts as a carrier of one-carbon units. Deficiency of a single vitamin of the B complex is rare, since poor diets are most often associated with multiple deficiency states. Nevertheless, specific syndromes are characteristic of deficiencies of individual vitamins, eg, beriberi (thiamin) cheilosis, glossitis, seborrhea (riboflavin) pellagra (niacin) peripheral neuritis (pyridoxine) megaloblastic anemia, methyhnalonic aciduria, and pernicious anemia (vitamin Bjj) and megaloblastic anemia (folic acid). Vitamin C deficiency leads to scurvy. [Pg.481]

The water-soluble vitamins of the B complex act as enzyme cofactors. Thiamin is a cofactor in oxidative... [Pg.497]

The ready availability of the transketolase (TK E.C. 2.2.1.1) from E. coli within the research collaboration in G. A. Sprenger s group suggested the joint development of an improved synthesis of D-xylulose 5-phosphate 19, which was expensive but required routinely for activity measurements [27]. In vivo, transketolase catalyzes the stereospecific transfer of a hydroxyacetyl nucleophile between various sugar phosphates in the presence of a thiamine diphosphate cofactor and divalent cations, and the C2 donor component 19 offers superior kinetic constants. For synthetic purposes, the enzyme is generally attractive for its high asymmetric induction at the newly formed chiral center and high kinetic enantioselectivity for 2-hydroxyaldehydes, as well as its broad substrate tolerance for aldehyde acceptors [28]. [Pg.359]

An enzyme cofactor can be either an inorganic ion (usually a metal cation) or a small organic molecule called a coenzyme. In fact, the requirement of many enzymes for metal-ion cofactors is the main reason behind our dietary need for trace minerals. Iron, zinc, copper, manganese, molybdenum, cobalt, nickel, and selenium are all essential trace elements that function as enzyme cofactors. A large number of different organic molecules also serve as coenzymes. Often, although not always, the coenzyme is a vitamin. Thiamine (vitamin Bj), for example, is a coenzyme required in the metabolism of carbohydrates. [Pg.1045]

Elecfiical stimulation of a wide range of nerve preparations results in thiamine release suggesting a role for the vitamin in membrane function that is independent of its enzyme cofactor role mediated by TDP. TDP is further phosphorylated to thiamine triphosphate (Fig. 2). Although its precise role has yet to be elucidated, it has been proposed that TTP activates high-conductance chloride channels (Bettendorf,... [Pg.108]

On the basis of the crystal structure of a Bacillus stearothermophilus pyruvate dehydrogenase subcomplex formed between the heterotetrameric El and the peripheral subunit binding domain of E2 with an evident stmctural dissymmetry of the two active sites, a direct active center communication via an acidic proton tunnel has been proposed (Frank et ak, 2004). According to this, one active site is in a closed state with an activated cofactor even before a substrate molecule is engaged, whereas the activation of the second active site is coupled to decarboxylation in the first site. Our own kinetic NMR studies on human PDH El (unpublished) support the model suggested, but similar studies on related thiamin enzymes, such as pyruvate decarboxylase, transketolase or pyruvate oxidase reveal that half-of-the-sites reactivity is a unique feature of ketoacid dehydrogenases. In line with this. X-ray crystallography studies on intermediates in transketolase catalysis indicated an active site occupancy close to unity in both active sites (Fiedler et al., 2002 and G. Schneider, personal communication). [Pg.1425]

Removal of CO2 from pyruvate. This reaction is carried out by the pyruvate decarboxylase (El) component of the complex. Like yeast pyruvate decarboxylase, responsible for the production of acetaldehyde, the enzyme uses a thiamine pyrophosphate cofactor and oxidizes the carboxy group of pyruvate to CO2. Unlike the glycolytic enzyme, acetaldehyde is not released from the enzyme along with CO2. Instead, the acetaldehyde is kept in the enzyme active site, where it is transferred to Coenzyme A. [Pg.138]

Scheme 11.7. A representation of fructose 6-phosphate undergoing a retroaldol-type reaction with the ketolase enzyme cofactor thiamine diphosphate to yield erythrose 4-phosphate and a two-carbon fragment that has remained attached to the thiamine cofactor of transke-... Scheme 11.7. A representation of fructose 6-phosphate undergoing a retroaldol-type reaction with the ketolase enzyme cofactor thiamine diphosphate to yield erythrose 4-phosphate and a two-carbon fragment that has remained attached to the thiamine cofactor of transke-...
Now, finally, sedoheptulose 7-phosphate undergoes a transketolase-catalyzed (EC 2.2.1.2) process (as in Scheme 11.7) to remove two carbon atoms using the enzyme cofactor thiamine diphosphate to yield ribose 5-phosphate and a two-carbon fragment that has remained attached to the thiamine cofactor of transketo-lase (EC 2.2.1.1, sedoheptulose 7-phosphate) (Scheme 11.11). When the two-carbon fragment is added to glyceraldehyde 3-phosphate, the material of Scheme 11.8 again is applied and xylulose 5-phosphate results. The xylulose 5-phosphate isomerizes to ribulose 5-phosphate as in Scheme 11.9 (with intervention of ribulose phosphate 3-epimerase (EC 5.1.3.1). And, the ribose 5-phosphate, an aldose, isomerizes (an aldose-ketose isomerase, EC 5.3.1.6, ribose 5-phosphate isomerase) to ribulose 5-phosphate. [Pg.1036]

Scheme 11.28. The decarboxylation of pyruvate catalyzed by pyruvate decarboxylase (EC 4.1.1.1) whose cofactor is thiamine diphsophate. The product is ethanal (acetaldehyde, CHaCHO) and the thiamine diphosphphate cofactor is regenerated. The acid AH is an unidentified proton donor. EC numbers and some graphic materials provided in this scheme have been taken with permission from appropriate links in a URL starting with http // www.chem.qmul.ac.uk/iubmb/enzyme/. Scheme 11.28. The decarboxylation of pyruvate catalyzed by pyruvate decarboxylase (EC 4.1.1.1) whose cofactor is thiamine diphsophate. The product is ethanal (acetaldehyde, CHaCHO) and the thiamine diphosphphate cofactor is regenerated. The acid AH is an unidentified proton donor. EC numbers and some graphic materials provided in this scheme have been taken with permission from appropriate links in a URL starting with http // www.chem.qmul.ac.uk/iubmb/enzyme/.
The TK-catalyzed reaction requires the presence of thiamine pyrophosphate and Mg " as cofactors. Although the substrate specificity of the enzyme has not been thoroughly investigated, it has been shown that the enzyme accepts a wide variety of 2-hydroxyaldehydes including D-glyceraldehyde 3-phosphate [591-57-1], D-glyceraldehyde [453-17-8], D-ribose 5-phosphate /47(9(9-2%/7, D-erythrose 4-phosphate and D-erythrose [583-50-6] (139,149—151). [Pg.346]

Acyloins (a-hydroxy ketones) are formed enzymatically by a mechanism similar to the classical benzoin condensation. The enzymes that can catalyze reactions of this type arc thiamine dependent. In this sense, the cofactor thiamine pyrophosphate may be regarded as a natural- equivalent of the cyanide catalyst needed for the umpolung step in benzoin condensations. Thus, a suitable carbonyl compound (a -synthon) reacts with thiamine pyrophosphate to form an enzyme-substrate complex that subsequently cleaves to the corresponding a-carbanion (d1-synthon). The latter adds to a carbonyl group resulting in an a-hydroxy ketone after elimination of thiamine pyrophosphate. Stereoselectivity of the addition step (i.e., addition to the Stand Re-face of the carbonyl group, respectively) is achieved by adjustment of a preferred active center conformation. A detailed discussion of the mechanisms involved in thiamine-dependent enzymes, as well as a comparison of the structural similarities, is found in references 1 -4. [Pg.672]

The water-soluble vitamins generally function as cofactors for metabolism enzymes such as those involved in the production of energy from carbohydrates and fats. Their members consist of vitamin C and vitamin B complex which include thiamine, riboflavin (vitamin B2), nicotinic acid, pyridoxine, pantothenic acid, folic acid, cobalamin (vitamin B12), inositol, and biotin. A number of recent publications have demonstrated that vitamin carriers can transport various types of water-soluble vitamins, but the carrier-mediated systems seem negligible for the membrane transport of fat-soluble vitamins such as vitamin A, D, E, and K. [Pg.263]

The PDHC catalyzes the irreversible conversion of pyruvate to acetyl-CoA (Fig. 42-3) and is dependent on thiamine and lipoic acid as cofactors (see Ch. 35). The complex has five enzymes three subserving a catalytic function and two subserving a regulatory role. The catalytic components include PDH, El dihydrolipoyl trans-acetylase, E2 and dihydrolipoyl dehydrogenase, E3. The two regulatory enzymes include PDH-specific kinase and phospho-PDH-specific phosphatase. The multienzyme complex contains nine protein subunits, including... [Pg.708]

The crystal structure of MPT synthase and the simultaneously determined NMR structure of the MoaD-related ThiS protein involved in thiamine biosynthesis [37] unambiguously demonstrated the evolutionary relationship between a subset of enzymes involved in the biosynthesis of S-containing cofactors (e.g. Moco, thiamine and certain EeS-clusters) and the process of ubiquitin activation. MoaD displays significant structural homology to human ubiquitin (Figure 3.3B and C), resulting in a superposition with a root mean square (rms) deviation of 3.6 A for 68 equivalent Ca atoms out of 76 residues in ubiquitin. The key secondary structure... [Pg.25]

The hypE proteins are 302-376 residues long and appear to consist of three domains. Domain 1 shows sequence identity to a domain from phosphoribosyl-aminoimida-zole synthetase which is involved in the fifth step in de novo purine biosynthesis and to a domain in thiamine phosphate kinase which is involved in the synthesis of the cofactor thiamine diphosphate (TDP). TDP is required by enzymes which cleave the bond adjacent to carbonyl groups, e.g. phosphoketolase, transketolase or pyruvate decarboxylase. Domain 2 also shows identity to a domain found in thiamine phosphate kinase. Domain 3 appears to be unique to the HypF proteins. [Pg.82]

The addition of cofactors to antibodies is a sure means to confer a catalytic activity to them insofar as this cofactor is responsible for the activity. Indeed for many enzymes, the interaction with cofactors such as thiamins, flavins, pyridoxal phosphate, and ions or metal complexes is absolutely essential for the catalysis. It is thus a question there of building a new biocatalyst with two partners the cofactor responsible for the catalytic activity, and the antibody which binds not only the cofactor but also the substrate that it positions in a specific way one with respect to the other, and can possibly take part in the catalysis thanks to some of its amino acids. [Pg.342]

This enzyme [EC 4.1.3.18] catalyzes the reversible car-boxylation of 2-acetolactate with carbon dioxide to form two pyruvate ions. Thiamin pyrophosphate is a required cofactor. [Pg.8]

This enzyme complex [EC 1.2.4.4], also known as 3-methyl-2-oxobutanoate dehydrogenase (lipoamide) and 2-oxoisovalerate dehydrogenase, catalyzes the reaction of 3-methyl-2-oxobutanoate with lipoamide to produce S-(2-methylpropanoyl)dihydrolipoamide and carbon dioxide. Thiamin pyrophosphate is a required cofactor. The complex also can utilize (5)-3-methyl-2-oxopenta-noate and 4-methyl-2-oxopentanoate as substrates. The complex contains branched-cham a-keto acid decarboxylase, dihydrolipoyl acyltransferase, and dihydrolipoa-mide dehydrogenase [EC 1.8.1.4]. [Pg.98]

Thiamin (vitamin Bi, 22) (Fig. 14) - an important cofactor of decarboxylases, transketolases, carboxy-lyases, and some other enzymes - was successfully glycosylated by enzymatic transglycosylation using p-galactosidase [59] and p-A-acetyl-hexosaminidase [60] from A. oryzae. [Pg.133]

In the form in which they are consumed, many vitamins are not biologically active. For several water-soluble vitamins such as thiamine, riboflavin, nicotinic acid, pyridoxine, activation includes phosphorylation or, as is the case with riboflavin and nicotinic acid, coupling to purine or pyridine nucleotides is required. In their major known actions, water-soluble vitamins participate as cofactors for specific enzymes, whereas at least two fat-soluble... [Pg.471]

Manganese is a cofactor of enzymes involved in energy metabolism and is required for hemoglobin synthesis, thiamin utilization and tendon and bone formation. Unlike nutrients that fulfil unique func-... [Pg.391]

Benzoylformate decarboxylase (BFD EC 4.1.1.7) belongs to the class of thiamine diphosphate (ThDP)-dependent enzymes. ThDP is the cofactor for a large number of enzymes, including pyruvate decarboxylase (PDC), benzaldehyde lyase (BAL), cyclohexane-1,2-dione hydrolase (CDH), acetohydroxyacid synthase (AHAS), and (lR,6] )-2-succinyl-6-hydroxy-2,4-cyclohexadiene-l-carboxylate synthase (SHCHC), which all catalyze the cleavage and formation of C-C bonds [1]. The underlying catalytic mechanism is summarized elsewhere [2] (see also Chapter 2.2.3). [Pg.298]

Thiamine diphosphate (ThDP) is an important cofactor in many enzymes which either transfer carbon units between molecules or decarboxylate organic acids. [Pg.312]

The project encompassed the comparative characterization of pyruvate decarboxylase from Z. mohilis (PDC) and benzoylformate decarboxylase from P. putida (BED) as well as their optimization for bioorganic synthesis. Both enzymes require thiamine diphosphate (ThDP) and magnesium ions as cofactors. Apart from the decarboxylation of 2-ketoacids, which is the main physiological reaction of these 2-ketoacid decarboxylases, both enzymes show a carboligase site reaction leading to chiral 2-hydroxy ketones (Scheme 2.2.3.1). A well-known example is... [Pg.327]

For this type of C-C bond formation both stereoisomers of the hydroxyphenyl-propanone can be obtained using either the BFD mentioned above or the benz-aldehyde lyase (BAL). Both of these enzymes are dependent on thiamine diphosphate (ThDP) as cofactor [22]. For the enantioselective reduction of the intermediate also, both stereoisomers can be obtained by using two different ADH enzymes. Thus all four possible stereoisomers of the diol can be obtained in high optical purity (see Scheme. 3.1.1) [23]. [Pg.421]

The first examples of mechanism must be divided into two principal classes the chemistry of enzymes that require coenzymes, and that of enzymes without cofactors. The first class includes the enzymes of amino-acid metabolism that use pyridoxal phosphate, the oxidation-reduction enzymes that require nicotinamide adenine dinucleotides for activity, and enzymes that require thiamin or biotin. The second class includes the serine esterases and peptidases, some enzymes of sugar metabolism, enzymes that function by way of enamines as intermediates, and ribonuclease. An understanding of the mechanisms for all of these was well underway, although not completed, before 1963. [Pg.3]


See other pages where Thiamine enzyme cofactor is mentioned: [Pg.121]    [Pg.1045]    [Pg.106]    [Pg.273]    [Pg.668]    [Pg.82]    [Pg.1035]    [Pg.167]    [Pg.172]    [Pg.88]    [Pg.631]    [Pg.14]    [Pg.302]    [Pg.131]    [Pg.541]    [Pg.217]    [Pg.225]    [Pg.605]    [Pg.397]    [Pg.201]    [Pg.301]    [Pg.683]   
See also in sourсe #XX -- [ Pg.106 , Pg.107 ]




SEARCH



Cofactor

Enzyme cofactor

© 2024 chempedia.info