Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermoplastics poly oxide

Poly(phenylene ether). The only commercially available thermoplastic poly(phenylene oxide) PPO is the polyether poly(2,6-dimethylphenol-l,4-phenylene ether) [24938-67-8]. PPO is prepared by the oxidative coupling of 2,6-dimethylphenol with a copper amine catalyst (25). Usually PPO is blended with other polymers such as polystyrene (see PoLYETPiERS, Aromatic). However, thermoplastic composites containing randomly oriented glass fibers are available. [Pg.38]

PIB based thermoplastic poly(urethane)s (TPU)s have been synthesized. These composites exhibit enhanced mechanical properties. Poly(tetramethylene oxide) (PTMO) has been used as a compatibi-lizer. [Pg.159]

Carbodiimides are also used as catalysts in the formation of polyamides from dicarboxylic acids and diisocyanates. The carbodiimide catalyst is generated in situ from the diisocyanate using dimethylphospholene oxide as the catalyst. In this manner segmented thermoplastic poly(ether amides) and poly(ester amides) are obtained from the acid terminated monomers and diisocyanates by reaction polymerization processes. This reaction is best conducted in a vented extruder because carbon dioxide is the byproduct. [Pg.269]

Because of its rapid crystallization, PBT is very suitable for use as crystallizable segment in multiblock copolymers, which belong to the class of thermoplastic polyester elastomers (TPEEs). PBT-based block copolymers have been synthesized and studied in detail in the last thirty years. The commercial PBT block copolymers mostly possess a polyether, e.g. poly(tetramethylene oxide) (PTMO), or aliphatic polyester amorphous phase. Thermoplastic poly(ester-ether) elastomers, based on PBT and PTMO were developed by DuPont, and commercially introduced on the market in 1972, under the trade name Hytrel . Extensive investigations on the synthesis of block copolymers based on PBT rigid (hard) segments and various new... [Pg.166]

It has been reported that films of the thermoplastics poly(ethylene oxide) [535] and polysulphones [534, 536, 543] can be used to monitor solar UV... [Pg.577]

The thermoplastic poly(ethylene glycol)/poly(butylene terephthalate) (PEG/ PBT) is the most representative and mature poly(ether ester) bioelastomer, whose molecular structure is shown in Scheme 8.23, being usually synthesized by ester exchange methods. Tg of the PEG/PBT bioelastomers is lower than 30 °C. Their in vitro and in vivo degradation happens both by hydrolysis and oxidation, in which hydrolysis is the main degradation mechanism. [Pg.277]

Physical or chemical vapor-phase mechanisms may be reasonably hypothesized in cases where a phosphoms flame retardant is found to be effective in a noncharring polymer, and especially where the flame retardant or phosphoms-containing breakdown products are capable of being vaporized at the temperature of the pyrolyzing surface. In the engineering of thermoplastic Noryl (General Electric), which consists of a blend of a charrable poly(phenylene oxide) and a poorly charrable polystyrene, experimental evidence indicates that effective flame retardants such as triphenyl phosphate act in the vapor phase to suppress the flammabiUty of the polystyrene pyrolysis products (36). [Pg.475]

Poly(ethylene oxide) [25322-68-3] (PEO) is a water-soluble, thermoplastic polymer produced by the heterogeneous polymerization of ethylene oxide. The white, free-flowing resins are characterized by the following stmctural formula ... [Pg.337]

Thermoplasticity. High molecular weight poly(ethylene oxide) can be molded, extmded, or calendered by means of conventional thermoplastic processing equipment (13). Films of poly(ethylene oxide) can be produced by the blown-film extmsion process and, in addition to complete water solubiUty, have the typical physical properties shown in Table 3. Films of poly(ethylene oxide) tend to orient under stress, resulting in high strength in the draw direction. The physical properties, melting behavior, and crystallinity of drawn films have been studied by several researchers (14—17). [Pg.341]

Thermoplastic Processing. Poly(ethylene oxide) resins can be thermoplasticaHy formed into soHd products, eg, films, tapes, plugs, retainers, and fillers (qv). Through the use of plasticizers (qv), poly(ethylene oxide) can be extmded, molded, and calendered on conventional thermoplastic... [Pg.342]

Significant use properties of poly(ethylene oxide) are complete water solubiHty, low toxicity, unique solution rheology, complexation with organic acids, low ash content, and thermoplasticity. [Pg.344]

Alkylated phenol derivatives are used as raw materials for the production of resins, novolaks (alcohol-soluble resins of the phenol—formaldehyde type), herbicides, insecticides, antioxidants, and other chemicals. The synthesis of 2,6-xylenol [576-26-1] h.a.s become commercially important since PPO resin, poly(2,6-dimethyl phenylene oxide), an engineering thermoplastic, was developed (114,115). The demand for (9-cresol and 2,6-xylenol (2,6-dimethylphenol) increased further in the 1980s along with the growing use of epoxy cresol novolak (ECN) in the electronics industries and poly(phenylene ether) resin in the automobile industries. The ECN is derived from o-cresol, and poly(phenylene ether) resin is derived from 2,6-xylenol. [Pg.53]

In addition, polyester polyols are made by the reaction of caprolactone with diols. Poly(caprolactone diols) are used in the manufacture of thermoplastic polyurethane elastomers with improved hydrolytic stabiHty (22). The hydrolytic stabiHty of the poly(caprolactone diol)-derived TPUs is comparable to TPUs based on the more expensive long-chain diol adipates (23). Polyether/polyester polyol hybrids are synthesized from low molecular weight polyester diols, which are extended with propylene oxide. [Pg.347]

Poly(tetramethylene oxide) polyols (PTMEG) are high performance polyethers that are crystalline waxes at molecular weights above 650 and liquids at lower molecular weights. They are only available as diols, but they produce adhesives with good hydrolysis resistance and moisture resistance, which is why these adhesives are even used in medical devices, blood bags, catheters, and heart-assist devices [25]. Certain thermoplastic polyurethane adhesives and solvent-borne adhesives are also based on PTMEG s. [Pg.770]

Hydrosilation reactions have been one of the earlier techniques utilized in the preparation of siloxane containing block copolymers 22,23). A major application of this method has been in the synthesis of polysiloxane-poly(alkylene oxide) block copolymers 23), which find extensive applications as emulsifiers and stabilizers, especially in the urethane foam formulations 23-43). These types of reactions are conducted between silane (Si H) terminated siloxane oligomers and olefinically terminated poly-(alkylene oxide) oligomers. Consequently the resulting system contains (Si—C) linkages between different segments. Earlier developments in the field have been reviewed 22, 23,43> Recently hydrosilation reactions have been used effectively by Ringsdorf 255) and Finkelmann 256) for the synthesis of various novel thermoplastic liquid crystalline copolymers where siloxanes have been utilized as flexible spacers. Introduction of flexible siloxanes also improved the processibility of these materials. [Pg.46]

PESA can be blended with various thermoplastics to alter or enhance their basic characteristics. Depending on the nature of thermoplastic, whether it is compatible with the polyamide block or with the soft ether or ester segments, the product is hard, nontacky or sticky, soft, and flexible. A small amount of PESA can be blended to engineering thermoplastics, e.g., polyethylene terepthalate (PET), polybutylene terepthalate (PBT), polypropylene oxide (PPO), polyphenylene sulfide (PPS), or poly-ether amide (PEI) for impact modification of the thermoplastic, whereas small amount of thermoplastic, e.g., nylon or PBT, can increase the hardness and flex modulus of PESA or PEE A [247]. [Pg.149]

Kricheldorf H.R., Wollheim T., Koning C.E., Werumeus B.H.G., and Altstadt V. Thermoplastic elastomers 1. Poly(ether-ester-imide)s based on 1,4-diaminobutane, trimeUitic anhydride, 1,4-dihydroxybutane and poly(tetramethylene oxide) diols, Polymer, 42, 6699, 2001. [Pg.155]


See other pages where Thermoplastics poly oxide is mentioned: [Pg.333]    [Pg.333]    [Pg.113]    [Pg.115]    [Pg.125]    [Pg.69]    [Pg.5262]    [Pg.506]    [Pg.2612]    [Pg.51]    [Pg.285]    [Pg.175]    [Pg.780]    [Pg.459]    [Pg.295]    [Pg.326]    [Pg.342]    [Pg.460]    [Pg.52]    [Pg.337]    [Pg.19]    [Pg.44]    [Pg.262]    [Pg.182]    [Pg.720]    [Pg.327]    [Pg.180]    [Pg.1058]    [Pg.388]    [Pg.120]    [Pg.206]    [Pg.20]   
See also in sourсe #XX -- [ Pg.340 ]




SEARCH



Engineering thermoplastics poly oxide

Oxidized Poly

Poly , oxidative

Poly oxide

Thermoplastic Poly

© 2024 chempedia.info