Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermoplastic polymers state

In practice, synthetic polymers are sometimes divided into two classes, thermosetting and thermo-plMtic. Those polymers which in their original condition will fiow and can be moulded by heat and pressime, but which in their finished or cured state cannot be re softened or moulded are known as thermo setting (examples phenol formaldehyde or urea formaldehyde polymer). Thermoplastic polymers can be resoftened and remoulded by heat (examples ethylene polymers and polymers of acrylic esters). [Pg.1014]

Hot Plate, Infrared, and Hot Gas Welding. These processes involve external means to heat thermoplastic polymers to a viscous state in... [Pg.344]

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

Stabilization of the Cellular State. The increase in surface area corresponding to the formation of many ceUs in the plastic phase is accompanied by an increase in the free energy of the system hence the foamed state is inherently unstable. Methods of stabilizing this foamed state can be classified as chemical, eg, the polymerization of a fluid resin into a three-dimensional thermoset polymer, or physical, eg, the cooling of an expanded thermoplastic polymer to a temperature below its second-order transition temperature or its crystalline melting point to prevent polymer flow. [Pg.404]

Applications. Among the P—O- and P—N-substituted polymers, the fluoroalkoxy- and aryloxy-substituted polymers have so far shown the greatest commercial promise (14—16). Both poly[bis(2,2,2-trifluoroethoxy)phosphazene] [27290-40-0] and poly(diphenoxyphosphazene) [28212-48-8] are microcrystalline, thermoplastic polymers. However, when the substituent symmetry is dismpted with a randomly placed second substituent of different length, the polymers become amorphous and serve as good elastomers. Following initial development of the fluorophosphazene elastomers by the Firestone Tire and Rubber Co., both the fluoroalkoxy (EYPEL-F) and aryloxy (EYPEL-A) elastomers were manufactured by the Ethyl Corp. in the United States from the mid-1980s until 1993 (see ELASTOLffiRS,SYNTHETic-PHOSPHAZENEs). [Pg.257]

Modified Bitumen Membranes. These membranes were developed in Europe during the late 1950s and have been used in the United States since the late 1970s. There are two basic types of modified asphalts and two types of reinforcement used in the membranes. The two polymeric modifiers used are atactic polypropylene (APP) and styrene—butadiene—styrene (SBS). APP is a thermoplastic polymer, whereas SBS is an elastomer (see Elastomers, thermoplastic elastomers). These modified asphalts have very different physical properties that affect the reinforcements used. [Pg.321]

PET, PTT, and PBT have similar molecular structure and general properties and find similar applications as engineering thermoplastic polymers in fibers, films, and solid-state molding resins. PEN is significantly superior in terms of thermal and mechanical resistance and barrier properties. The thermal properties of aromatic-aliphatic polyesters are summarized in Table 2.6 and are discussed above (Section 2.2.1.1). [Pg.44]

For the most part, plastics are man-made since very few plcistlcs are natural, i.e.- nature-made. Natural plastics include large molecular-wei t proteins and similar molecules. Man-made plastics can be classified as either thermoplastic or thermosetting. Each class derives its physical properties from the effects of application of heat, the former becoming "plastic" (that is- it becomes soft and tends to flow) while the latter becomes less "plastic" and tends to remain in a softened state. This difference in change of state derives from the actual nature of the chemical bonds in the polymer. Thermoplastic polymers generally consist of molecules composed of many monomeric units. A good example is that of polyethylene where the monomeric unit is -(CH2-CH2)-. The molecule is linear... [Pg.403]

This difference in spatial characteristics has a profound effect upon the polymer s physical and chemical properties. In thermoplastic polymers, application of heat causes a change from a solid or glassy (amorphous) state to a flowable liquid. In thermosetting polymers, the change of state occurs from a rigid solid to a soft, rubbery composition. The glass transition temperature, Tg, ... [Pg.404]

In the present study, a new way of introducing a non-reactive bromine-containing compound, ammonium bromide, is discussed. The treatment, which can be carried out for many thermoplastic polymers 17,8] in the solid state, is performed in two consecutive stages ... [Pg.131]

Thermoplastic polymers can be heated and cooled reversibly with no change to their chemical structure. Thermosets are processed or cured by a chemical reaction which is irreversible they can be softened by heating but do not return to their uncured state. The polymer type will dictate whether the compound is completely amorphous or partly crystalline at the operating temperature, and its intrinsic resistance to chemicals, mechanical stress and electrical stress. Degradation of the basic polymer, and, in particular, rupture of the main polymer chain or backbone, is the principal cause of reduction of tensile strength. [Pg.21]

Liquid crystalline aromatic polyesters are a class of thermoplastic polymers that exhibit a highly ordered structure in both the melt and solid states. They can be used to replace such materials as metals, ceramics, composites and other plastics... [Pg.776]

Which broad class of thermoplastic polymers densities the least during cooling and solidification from a melt state into a solid state Why ... [Pg.34]

Figure 3.6 Temperature dependence of the polymer state of thermoplastic and thermosets (diagrammatic). Figure 3.6 Temperature dependence of the polymer state of thermoplastic and thermosets (diagrammatic).
In a noteworthy departure from the approach used in the theoretically-based equations of state, Arends L42,43] developed a phenomenologically-based equalion-of-state for polymer melts directly from observations on experimental data for five thermoplastic polymers and then attempted to extract physical meaning from this equation. [Pg.132]

Poly(ethylene terephthalate) Poly(ethylene terephthalate) is a widely used semicrystalline polymer. The macroscopic properties of PET such as thermal, mechanical, optical, and permeation properties depend on its specific internal morphologies and microstructure arrangement. It can be quenched into the completely amorphous state, whereas thermal and thermomechanical treatments lead to partially crystallized samples with easily controlled degrees of crystallinity. The crystallization behavior of thermoplastic polymers is strongly affected by processing conditions [91-93]. [Pg.121]


See other pages where Thermoplastic polymers state is mentioned: [Pg.485]    [Pg.165]    [Pg.220]    [Pg.106]    [Pg.30]    [Pg.13]    [Pg.18]    [Pg.112]    [Pg.199]    [Pg.115]    [Pg.641]    [Pg.865]    [Pg.23]    [Pg.14]    [Pg.260]    [Pg.182]    [Pg.306]    [Pg.602]    [Pg.885]    [Pg.2006]    [Pg.198]    [Pg.3031]    [Pg.195]    [Pg.89]    [Pg.89]   
See also in sourсe #XX -- [ Pg.35 ]




SEARCH



Thermoplastics states

© 2024 chempedia.info