Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermogravimetric analysis temperature

Berlin, A., and R. J. Robinson Thermogravimetric Analysis Temperature Limits and Rate of Heating. Anal. Chim. Acta 27, 50 (1962). [Pg.247]

In a thermogravimetric analysis, the sample is placed in a small weighing boat attached to one arm of a specially designed electromagnetic balance and placed inside an electric furnace. The temperature of the electric furnace is slowly increased at a fixed rate of a few degrees per minute, and the sample s weight is monitored. [Pg.257]

The process known as transimidization has been employed to functionalize polyimide oligomers, which were subsequentiy used to produce polyimide—titania hybrids (59). This technique resulted in the successhil synthesis of transparent hybrids composed of 18, 37, and 54% titania. The effect of metal alkoxide quantity, as well as the oligomer molecular weight and cure temperature, were evaluated using differential scanning calorimetry (dsc), thermogravimetric analysis (tga) and saxs. [Pg.330]

The definition of polymer thermal stabiUty is not simple owing to the number of measurement techniques, desired properties, and factors that affect each (time, heating rate, atmosphere, etc). The easiest evaluation of thermal stabiUty is by the temperature at which a certain weight loss occurs as observed by thermogravimetric analysis (tga). Early work assigned a 7% loss as the point of stabiUty more recentiy a 10% value or the extrapolated break in the tga curve has been used. A more reaUstic view is to compare weight loss vs time at constant temperature, and better yet is to evaluate property retention time at temperature one set of criteria has been 177°C for 30,000 h, or 240°C for 1000 h, or 538°C for 1 h, or 816°C for 5 min (1). [Pg.530]

Thermogravimetric analysis (TGA) Onset temperature of weight loss... [Pg.24]

The modified NBR samples were characterized by differential scanning calorimetry [11,78-80,98]. The glass-transition temperature (T ) decreased with the level of hydrogenation. In the case of HFNBR, Tg increased with an increase in the addition of aldehyde groups to the polymer chain. Thermogravimetric analysis of the modified polymers have also been carried out [15]. [Pg.570]

In most of the studies discussed above, except for the meta-linked diamines, when the aromatic content (dianhydride and diamine chain extender), of the copolymers were increased above a certain level, the materials became insoluble and infusible 153, i79, lsi) solution to this problem with minimum sacrifice in the thermal properties of the products has been the synthesis of siloxane-amide-imides183). In this approach pyromellitic acid chloride has been utilized instead of PMDA or BTDA and the copolymers were synthesized in two steps. The first step, which involved the formation of (siloxane-amide-amic acid) intermediate was conducted at low temperatures (0-25 °C) in THF/DMAC solution. After purification of this intermediate thin films were cast on stainless steel or glass plates and imidization was obtained in high temperature ovens between 100 and 300 °C following a similar procedure that was discussed for siloxane-imide copolymers. Copolymers obtained showed good solubility in various polar solvents. DSC studies indicated the formation of two-phase morphologies. Thermogravimetric analysis showed that the thermal stability of these siloxane-amide-imide systems were comparable to those of siloxane-imide copolymers 183>. [Pg.35]

Thermal stability is a crucial factor when polysaccharides are used as reinforcing agents because they suffer from inferior thermal properties compared to inorganic fillers. However, thermogravimetric analysis (TGA) of biocomposites suggested that the degradation temperatures of biocomposites are in close proximity with those of carbon black composites (Table-1). [Pg.122]

When solids react, we would like to know at what temperature the solid state reaction takes place. If the solid decomposes to a different composition, or phase, we would like to have this knowledge so that we can predict and use that knowledge In preparation of desired materials. Sometimes, intermediate compounds form before the final phase. In this chapter, we will detail some of the measurements used to characterize the solid state and methods used to foUow solid state reactions. This will consist of various types of thermal analysis (TA), including differentlEd thermal analysis (DTA), thermogravimetric analysis (TGA) and measurements of optical properties. [Pg.357]

The 4 1 5 phase was shown by thermogravimetric analysis to dissociate at about 160 °C to zinc oxide and the 1 1 2 phase, a process which was verified using X-ray diffraction (Sorrell, 1977). Once the 1 1 2 phase was formed it underwent characteristic dissociation at temperatures above 160 °C. [Pg.288]

Both thermogravimetric analysis and differential scanning calorimetric studies were carried out on modified and unmodified PPO samples. Table IV presents the weight losses and the glass transition temperatures of the most representative polymers. [Pg.51]

Thermal Properties. The glass transition temperature (Tg) and the decomposition temperature (Td) were measured with a DuPont 910 Differential Scanning Calorimeter (DSC) calibrated with indium. The standard heating rate for all polymers was 10 °C/min. Thermogravimetric analysis (TGA) was performed on a DuPont 951 Thermogravimetric Analyzer at a heating rate of 20 °C/min. [Pg.157]

Thermogravimetric analysis (TGA) of these poly(phosphazenes) shows their decomposition onset temperatures in an inert atmosphere to be ca. 350 to 400°C, depending on the side group. These temperatures are ca. 25-75°C higher than that reported for commercial materials based on the fluoroalkoxy substituted polymer, [(CFgCHjO PN],. (19) Interestingly, methyl rather than phenyl side groups yield the more stable materials, as shown by... [Pg.286]

Ando and co-workers have reported the synthesis of a silyl-carborane hybrid diethynylbenzene-silylene polymer (108) (Fig. 66) possessing high thermal stability.136 The polymer contained Si and —C=C— group in the main chain and m-carborane and vinyl groups in the side chain. The 5% weight-loss temperature of the cured polymer in air was over 1000°C as determined by thermogravimetric analysis. [Pg.67]

In a study on the thermal and UV ageing of two commercial polyfoxymethy-lene) (POM) samples, one of which was a copolymer (see related study discussed later under Section 4.3, thermogravimetric analysis (TGA)), used in car interior applications, involving both DSC and TGA, isothermal OIT measurements were made at several different temperatures [8]. One conclusion from this study was that "extrapolation of the OIT data from high temperatures (molten state) to ambient temperatures in the solid state does not reflect effective antioxidant performance at room temperature", and thus measurements close to the melting point are not appropriate for reliable lifetime estimations. [Pg.391]

Nitrogen adsorption was performed at -196 °C in a Micromeritics ASAP 2010 volumetric instrument. The samples were outgassed at 80 °C prior to the adsorption measurement until a 3.10 3 Torr static vacuum was reached. The surface area was calculated by the Brunauer-Emmett-Teller (BET) method. Micropore volume and external surface area were evaluated by the alpha-S method using a standard isotherm measured on Aerosil 200 fumed silica [8]. Powder X-ray diffraction (XRD) patterns of samples dried at 80 °C were collected at room temperature on a Broker AXS D-8 diffractometer with Cu Ka radiation. Thermogravimetric analysis was carried out in air flow with heating rate 10 °C min"1 up to 900 °C in a Netzsch TG 209 C thermal balance. SEM micrographs were recorded on a Hitachi S4500 microscope. [Pg.390]

When heated, many solids evolve a gas. For example, most carbonates lose carbon dioxide when heated. Because there is a mass loss, it is possible to determine the extent of the reaction by following the mass of the sample. The technique of thermogravimetric analysis involves heating the sample in a pan surrounded by a furnace. The sample pan is suspended from a microbalance so its mass can be monitored continuously as the temperature is raised (usually as a linear function of time). A recorder provides a graph showing the mass as a function of temperature. From the mass loss, it is often possible to establish the stoichiometry of the reaction. Because the extent of the reaction can be followed, kinetic analysis of the data can be performed. Because mass is the property measured, TGA is useful for... [Pg.266]

For this purpose, all three catalyst supports were initially synthesized by a chemical vapor deposition (CVD) process and thereafter, using a wet impregnation method, loaded with cobalt as the active component for FTS. The as-synthesized Co/nanocatalysts were then characterized by applying electron microscopic analysis as well as temperature-programmed desorption, chemi- and physisorption measurements, thermogravimetric analysis, and inductively coupled plasma... [Pg.17]


See other pages where Thermogravimetric analysis temperature is mentioned: [Pg.201]    [Pg.445]    [Pg.7]    [Pg.60]    [Pg.327]    [Pg.225]    [Pg.521]    [Pg.594]    [Pg.131]    [Pg.496]    [Pg.120]    [Pg.242]    [Pg.444]    [Pg.35]    [Pg.299]    [Pg.361]    [Pg.894]    [Pg.895]    [Pg.262]    [Pg.781]    [Pg.358]    [Pg.137]    [Pg.213]    [Pg.411]    [Pg.24]    [Pg.114]    [Pg.152]    [Pg.670]    [Pg.298]    [Pg.266]    [Pg.7]   
See also in sourсe #XX -- [ Pg.155 , Pg.156 , Pg.157 , Pg.184 , Pg.185 , Pg.186 , Pg.187 ]




SEARCH



Analysis temperature

Modulated temperature thermogravimetric analysis

Thermogravimetric analysis

Thermogravimetric analysis reaction rate temperature dependence

© 2024 chempedia.info