Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics exothermicity

Thermodynamically the insertion of an alkene into a metal-hydride bond is much more favourable than the insertion of carbon monoxide into a metal-methyl bond. The latter reaction is more or less thermoneutral and the equilibrium constant is near unity under standard conditions. The metal-hydride bond is stronger than a metal-carbon bond and the insertion of carbon monoxide into a metal hydride is thermodynamically most often uphill. Insertion of alkenes is also a reversible process, but slightly more favourable than CO insertion. Formation of new CT bonds at the cost of the loss of the ji bond of the alkene during alkene hydrogenation etc., makes the overall processes of alkenes thermodynamically exothermic, especially for early transition metals. [Pg.111]

The latter two reactions proceed via the inner-sphere mechanism (see below), that is, they require access of the substrate to the central Cu(I) ion. The disproportionation reaction requires the contact of the central copper ion with a smface, preferably a Cu°(s) surface, as the formation of a Cu° atom is extremely endothermic due to the lattice energy of copper, - 301.4 kJmol (5). Thus ligands that block sterically the approach of a substrate or of a surface to the central copper ion stabilize it (19). An extreme example is 1,4,5,7.7,8,11,12,14,14-decamethyl-l,4,8,ll-tetraazacyclotetradecane, (27). Thus [Cu(I)L ] is stable even in aerated aqueous solutions (27). In analogy, some enzymes with Cud) as the active site, for example, CuSOD, inhibit disproportionation or the reaction with O2 by inhibiting the approach of two Cu(I) central ions to each other which is required for these reactions which are thermodynamically exothermic. [Pg.227]

The fact that, thermodynamically, exothermic reactions are favored at low temperatures rather than high temperatures the conversion of fuel at equilibrium will therefore be less than at low temperatures. In practice, the conversion achieved in low temperature cells is kinetically determined and is less than in high temperature cells. [Pg.89]

Preparation of Plutonium Metal from Fluorides. Plutonium fluoride, PuF or PuF, is reduced to the metal with calcium (31). Although the reactions of Ca with both fluorides are exothermic, iodine is added to provide additional heat. The thermodynamics of the process have been described (133). The purity of production-grade Pu metal by this method is ca 99.87 wt % (134). Metal of greater than 99.99 wt % purity can be produced by electrorefining, which is appHcable for Pu alloys as well as to purify Pu metal. The electrorefining has been conducted at 740°C in a NaCl—KCl electrolyte containing PuCl [13569-62-5], PuF, or PuF. Processing was done routinely on a 4-kg Pu batch basis (135). [Pg.201]

It is accepted that, at normal pressures, mtile is the thermodynamically stable form of titanium dioxide at all temperatures. Calorimetric studies have demonstrated that mtile is more stable than anatase and that brookite and Ti02 (ii) have intermediate stabiHties, although the relative stabiHties of brookite and Ti02(ii) have not yet been defined. The transformation of anatase to mtile is exothermic, eg, 12.6 KJ/mol (9), although lower figures have also been reported (63). The rate of transformation is critically dependent on the detailed environment and may be either promoted or retarded by the presence of other substances. For example, phosphoms inhibits the transformation of anatase to mtile (64). [Pg.120]

The exothermic oxidation reaction is carried out ia the gas phase at temperatures of 1200°C or higher. Relevant thermodynamic data are given ia Table 11. ... [Pg.125]

Most chemical reactions are exothermic. In the few endothermic reactions that are known, heat is absorbed into the reaction product or products, which are known as endothermic or energy-rich compounds. Such compounds are thermodynamically unstable because heat woiild be released on decomposition of their elements. The majority of endothermic compounds possess a tendency toward insta-bihty and possibly explosive decomposition under various circumstances of initiation. [Pg.2313]

The kinetics and thermodynamics of the reaction, and of possible side reactions, need to be understood. The explosive potential of chemicals liable to exothermic reaction should be carefully appraised. [Pg.249]

In the case of thermodynamics, the designer can investigate the nature of the reaction heat and whether the reaction is reversible. If these exothermic reactions are irreversible, attention may be focused on the influence of reactor design on conversion and with heat transfer control. An objective of reactor design is to determine the size and type of reactor and mode of operation for the required job. The choice... [Pg.261]

Select Energy (Properties menu). Notice that it updates automatically as you go from one frame to another. This allows you to easily construct reaction energy diagrams (energy vs. frame number or vs. a specific geometrical parameter). Make such a plot for this Sn2 reaction. Note, that the reaction as written is thermodynamically favorable, i.e., it is exothermic. Note also, that only a relatively small energy barrier needs to be surmounted. [Pg.11]

In addition to molecular geometry, the most important quantity to come out of molecular modeling is the energy. Energy can be used to reveal which of several isomers is most stable, to determine whether a particular chemical reaction will have a thermodynamic driving force (an exothermic reaction) or be thermodynamically uphill (an endothermic reaction), and to ascertain how fast a reaction is likely to proceed. Other molecular properties, such as the dipole moment, are also important, but the energy plays a special role. [Pg.13]

A negative AE indicates an exothermic (thermodynamically favorable) reaction, while a positive AE an endothermic (thermodynamically unfavorable) reaction. [Pg.13]

Is the reaction as written exothermic, i.e., is there a thermodynamic driving force Rationalize your result. Is there an activation barrier to the reaction If so, is it typical of that of a thermal reaction (.04 to. 10 au or approximately 40-60 kcal/mol), much smaller or much larger ... [Pg.251]

According to the second law of thermodynamics, for a reaction to proceed spontaneously it must produce an increase in entropy (AS > 0). Because most spontaneous chemical reactions in the body are exothermic (AH < 0), most spontaneous chemical reactions will have AG values less than zero as well. This means that if, in the reaction shown in Equation... [Pg.167]

Reactions 1 and 3 are highly exothermic and therefore have equilibrium constants that decrease rapidly with temperature. Reaction 2 is moderately exothermic, and consequently its equilibrium constant shows a moderate decrease with temperature. Reaction 4 is moderately endothermic, and its equilibrium constant increases with increasing temperature. The relationship between temperature and equilibrium constant for these four reactions is depicted in Figure 1 where carbon is assumed to be graphite. Thermodynamic data were taken from Refs. 1 and 2. [Pg.41]

Polymerization thermodynamics has been reviewed by Allen and Patrick,323 lvin,JM [vin and Busfield,325 Sawada326 and Busfield/27 In most radical polymerizations, the propagation steps are facile (kp typically > 102 M 1 s l -Section 4.5.2) and highly exothermic. Heats of polymerization (A//,) for addition polymerizations may be measured by analyzing the equilibrium between monomer and polymer or from calorimetric data using standard thermochemical techniques. Data for polymerization of some common monomers are collected in Table 4.10. Entropy of polymerization ( SP) data are more scarce. The scatter in experimental numbers for AHp obtained by different methods appears quite large and direct comparisons are often complicated by effects of the physical state of the monomei-and polymers (i.e whether for solid, liquid or solution, degree of crystallinity of the polymer). [Pg.213]

Propagation reactions in radical polymerization and copolymerization arc generally highly exothermic and can be assumed to be irreversible. Exceptions to this general rule arc those involving monomers with low ceiling temperatures (Section 4.5.1). The thermodynamics of copolymerization has been reviewed by Sawada.85... [Pg.353]

By thermodynamic convention, l Hp < 0 for exothermic reactions, so that a negative sign is attached to the heat-generation term. When there are multiple reactions, the heat-generation term refers to the net effect of all reactions. Thus, the term is an implicit summation over all M reactions that... [Pg.159]

Common reaction rate v. temperature characteristics for reactions are illustrated in Figure 6.5. To avoid runaway conditions (Fig. 6.5a) or an explosion (Figure 6.5c), it may be essential to control the rate of addition of reactants and the temperature. The kinetics and thermodynamics of the reaction, and of possible side reactions, need to be understood. The explosive potential of chemicals liable to exothermic reaction should be carefully appraised. [Pg.176]

Experimental studies, combined with thermodynamic analysis, indicate that the CTA hydropurification process is a complex reaction system including both parallel and tandem reactions wherein 4-CBA hydrogenation is exothermic and its paralleled decarbonylation is endothermic. [Pg.296]

Both these everyday processes are spontaneous, but whereas one process is endothermic, the other is exothermic. The energy and enthalpy of the system increase in one process, but these quantities decrease in the other process. This simple example demonstrates that analyzing energy changes and enthalpy changes is not enough to predict whether a process will occur spontaneously. We need a property other than energy and enthalpy if we hope to use thermodynamics to determine when a process will be spontaneous. [Pg.978]

We see that the total change in entropy is a positive quantity for both these spontaneous processes, even though one process is exothermic and the other is endothermic. When this type of calculation is carried out for other processes, the same result is always obtained. For any spontaneous process, the total change of entropy is a positive quantity. Thus, this new state function of entropy provides a thermod3mamic criterion for spontaneity, which is summarized in the second law of thermodynamics ... [Pg.985]


See other pages where Thermodynamics exothermicity is mentioned: [Pg.84]    [Pg.66]    [Pg.84]    [Pg.66]    [Pg.175]    [Pg.272]    [Pg.33]    [Pg.415]    [Pg.416]    [Pg.331]    [Pg.2315]    [Pg.25]    [Pg.191]    [Pg.228]    [Pg.56]    [Pg.60]    [Pg.186]    [Pg.238]    [Pg.278]    [Pg.44]    [Pg.298]    [Pg.17]    [Pg.182]    [Pg.171]    [Pg.124]    [Pg.111]    [Pg.98]    [Pg.55]    [Pg.486]    [Pg.228]   


SEARCH



Exothermic, exothermal

Exothermicity

Exotherms

Thermodynamic parameters, exothermic

Thermodynamic parameters, exothermic reaction

Thermodynamics exothermic

Thermodynamics exothermic

Thermodynamics exothermic reactions

© 2024 chempedia.info