Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic precision

Activities of the ions in water can be considered to be effective concentrations, more thermodynamically precise than the actual molar concentrations of ions. The activity of any ion, is related to the concentration, by the activity coefficient,... [Pg.7]

The solubihty product is an example of a thermodynamically precise quantity, which can be expressed wholly in terms of the mean activity with no loss of thermodynamic information ... [Pg.8]

It is to be established that Eq. (5.1) has not been very precisely formulated, since it is possible to add species from outside to the perfect solid (or vice versa), so that, in addition to the re-arrangement , it is also possible to encoimter substitution , addition and elimination processes . In all cases it is possible to describe, with thermodynamic precision, the real solid as a superposition of defect building units and the constituents of a perfect solid (the monomeric units are sometimes termed lattice molecules ), as we will now see in some detail. [Pg.109]

In spite of considerable development of thermodynamics and molecular theory, most of the methods used today are empirical and their operation requires knowledge of experimental values. However, the rate of accumulation of experimental data seems to be slowing down even though the need for precise values is on the rise. It is then necessary to rely on methods said to be predictive and which are only estimates. [Pg.85]

It turns out to be considerably easier to obtain fairly precise measurements of a change in the surface free energy of a solid than it is to get an absolute experimental value. The procedures and methods may now be clear-cut, and the calculation has a thermodynamic basis, but there remain some questions about the physical meaning of the change. This point is discussed further in the following material and in Section X-6. [Pg.350]

Mitchell M J and J A McCammon 1991. Free Energy Difference Calculations by Thermodynamic Integration Difficulties in Obtaining a Precise Value. Journal of Computational Chemistry 12 271-275. [Pg.652]

Membra.ne Diffusiona.1 Systems. Membrane diffusional systems are not as simple to formulate as matrix systems, but they offer much more precisely controlled and uniform dmg release. In membrane-controlled dmg deUvery, the dmg reservoir is intimately surrounded by a polymeric membrane that controls the dmg release rate. Dmg release is governed by the thermodynamic energy derived from the concentration gradient between the saturated dmg solution in the system s reservoir and the lower concentration in the receptor. The dmg moves toward the lower concentration at a nearly constant rate determined by the concentration gradient and diffusivity in the membrane (33). [Pg.144]

If the experimental values P and w are closely reproduced by the correlating equation for g, then these residues, evaluated at the experimental values of X, scatter about zero. This is the result obtained when the data are thermodynamically consistent. When they are not, these residuals do not scatter about zero, and the correlation for g does not properly reproduce the experimental values P and y . Such a correlation is, in fact, unnecessarily divergent. An alternative is to process just the P-X data this is possible because the P-x -y data set includes more information than necessary. Assuming that the correlating equation is appropriate to the data, one merely searches for values of the parameters Ot, b, and so on, that yield pressures by Eq. (4-295) that are as close as possible to the measured values. The usual procedure is to minimize the sum of squares of the residuals 6P. Known as Barkers method Austral. ]. Chem., 6, pp. 207-210 [1953]), it provides the best possible fit of the experimental pressures. When the experimental data do not satisfy the Gibbs/Duhem equation, it cannot precisely represent the experimental y values however, it provides a better fit than does the procedure that minimizes the sum of the squares of the 6g residuals. [Pg.537]

Since air is a mixture of predominantly nitrogen, oxygen, and a host of lesser impurities, there has been less interest in developing precise thermodynamic properties. The only recent correlation of thermodynamic properties is that published by Vasserman, et al. (Barouch, Israel Program for Scientific Translations, Jerusalem, 1970), and is based on the principle of corresponding states because of the scarcity of experimental data. [Pg.1126]

Thermodynamic Analyses of Cycles The thermodynamic quahty measure of either a piece of equipment or an entire process is its reversibility. The second law, or more precisely the entropy increase, is an effective guide to this degree of irreversibility. However, to obtain a clearer picture of what these entropy increases mean, it has become convenient to relate such an analysis to the additional work that is required to overcome these irreversibihties. The fundamental equation for such an analysis is... [Pg.1130]

This expression has a formal character and has to be complemented with a prescription for its evaluation. A priori, we can vary the values of the fields independently at each point in space and then we deal with uncountably many degrees of freedom in the system, in contrast with the usual statistical thermodynamics as seen above. Another difference with the standard statistical mechanics is that the effective Hamiltonian has to be created from the basic phenomena that we want to investigate. However, a description in terms of fields seems quite natural since the average of fields gives us the actual distributions of particles at the interface, which are precisely the quantities that we want to calculate. In a field-theoretical approach we are closer to the problem under consideration than in the standard approach and then we may expect that a simple Hamiltonian is sufficient to retain the main features of the charged interface. A priori, we have no insurance that it... [Pg.806]

The reason is that thermodynamics describes the system in equihbrium as a state, i.e., the question of the initial conditions for the trajectories of all shared particles is unimportant. This means an enormous simphfication for the theory To be precise we do not need the system to be in equihbrium, but small parts of the system (each one containing a few atoms) should be describable by at least some local equihbrium, so that we can speak of a local temperature, for example. [Pg.855]

The theory of seaweed formation does not only apply to solidification processes but in fact to the completely different phenomenon of a wettingdewetting transition. To be precise, this applies to the so-called partial wetting scenario, where a thin liquid film may coexist with a dry surface on the same substrate. These equations are equivalent to the one-sided model of diffusional growth with an effective diffusion coefficient which depends on the viscosity and on the thermodynamical properties of the thin film. [Pg.895]

Chemistry can be divided (somewhat arbitrarily) into the study of structures, equilibria, and rates. Chemical structure is ultimately described by the methods of quantum mechanics equilibrium phenomena are studied by statistical mechanics and thermodynamics and the study of rates constitutes the subject of kinetics. Kinetics can be subdivided into physical kinetics, dealing with physical phenomena such as diffusion and viscosity, and chemical kinetics, which deals with the rates of chemical reactions (including both covalent and noncovalent bond changes). Students of thermodynamics learn that quantities such as changes in enthalpy and entropy depend only upon the initial and hnal states of a system consequently thermodynamics cannot yield any information about intervening states of the system. It is precisely these intermediate states that constitute the subject matter of chemical kinetics. A thorough study of any chemical reaction must therefore include structural, equilibrium, and kinetic investigations. [Pg.1]

According to this very simple derivation and result, the position of the transition state along the reaction coordinate is determined solely by AG° (a thermodynamic quantity) and AG (a kinetic quantity). Of course, the potential energy profile of Fig. 5-15, upon which Eq. (5-60) is based, is very unrealistic, but, quite remarkably, it is found that the precise nature of the profile is not important to the result provided certain criteria are met, and Miller " obtained Eq. (5-60) using an arc length minimization criterion. Murdoch has analyzed Eq. (5-60) in detail. Equation (5-60) can be considered a quantitative formulation of the Hammond postulate. The transition state in Fig. 5-9 was located with the aid of Eq. (5-60). [Pg.224]

It may happen that AH is not available for the buffer substance used in the kinetic studies moreover the thermodynamic quantity A//° is not precisely the correct quantity to use in Eq. (6-37) because it does not apply to the experimental solvent composition. Then the experimentalist can determine AH. The most direct method is to measure AH calorimetrically however, few laboratories Eire equipped for this measurement. An alternative approach is to measure K, under the kinetic conditions of temperature and solvent this can be done potentiometrically or by potentiometry combined with spectrophotometry. Then, from the slope of the plot of log K a against l/T, AH is calculated. Although this value is not thermodynamically defined (since it is based on the assumption that AH is temperature independent), it will be valid for the present purpose over the temperature range studied. [Pg.258]

The solid is pale blue the liquid is an intense blue at low temperatures but the colour fades and becomes greenish due to the presence of NO2 at higher temperatures. The dissociation also limits the precision with which physical properties of the compound can be determined. At 25°C the dissociative equilibrium in the gas phase is characterized by the following thermodynamic quantities ... [Pg.454]

The aim of the present study is precisely to investigate the thermodynamical properties of an interface when the bulk transition is of first order. We will consider the case of a binary alloy on the fee lattice which orders according to the LI2 (CuaAu type) structure. [Pg.122]

In any process, we are interested not only in the direction of heat flow but also in its magnitude. We will express q in the units introduced in Chapter 6, joules and kilojoules. The joule is named for James Joule (1818-1889), who carried out very precise thermometric measurements that established the first law of thermodynamics (Section 8.7). [Pg.199]

Chueh s method for calculating partial molar volumes is readily generalized to liquid mixtures containing more than two components. Required parameters are and flb (see Table II), the acentric factor, the critical temperature and critical pressure for each component, and a characteristic binary constant ktj (see Table I) for each possible unlike pair in the mixture. At present, this method is restricted to saturated liquid solutions for very precise work in high-pressure thermodynamics, it is also necessary to know how partial molar volumes vary with pressure at constant temperature and composition. An extension of Chueh s treatment may eventually provide estimates of partial compressibilities, but in view of the many uncertainties in our present knowledge of high-pressure phase equilibria, such an extension is not likely to be of major importance for some time. [Pg.165]


See other pages where Thermodynamic precision is mentioned: [Pg.150]    [Pg.151]    [Pg.601]    [Pg.101]    [Pg.150]    [Pg.151]    [Pg.601]    [Pg.101]    [Pg.166]    [Pg.358]    [Pg.147]    [Pg.273]    [Pg.289]    [Pg.408]    [Pg.351]    [Pg.333]    [Pg.22]    [Pg.271]    [Pg.56]    [Pg.469]    [Pg.710]    [Pg.49]    [Pg.640]    [Pg.1027]    [Pg.58]    [Pg.63]    [Pg.355]    [Pg.362]    [Pg.29]    [Pg.75]    [Pg.1461]    [Pg.464]    [Pg.87]    [Pg.158]   
See also in sourсe #XX -- [ Pg.150 ]




SEARCH



© 2024 chempedia.info