Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic local

Among the factors which govern the thermodynamic localization of the redox potential, in addition to the previously mentioned electronic effects, there are also the steric influences.134... [Pg.283]

Thermodynamic local equihbrium at the uptake (feed-LM) and release (LM-strip) interfaces. [Pg.23]

The divergence theorem is applied to the third term of the r.h.s. of this equation and substitution of Stokes power formula gives the following Lagrangian form of the First Law of Thermodynamics (local balance of energy) ... [Pg.90]

In general, it seems more reasonable to suppose that in chemisorption specific sites are involved and that therefore definite potential barriers to lateral motion should be present. The adsorption should therefore obey the statistical thermodynamics of a localized state. On the other hand, the kinetics of adsorption and of catalytic processes will depend greatly on the frequency and nature of such surface jumps as do occur. A film can be fairly mobile in this kinetic sense and yet not be expected to show any significant deviation from the configurational entropy of a localized state. [Pg.709]

If there are no reactions, the conservation of the total quantity of each species dictates that the time dependence of is given by minus the divergence of the flux ps vs), where (vs) is the drift velocity of the species s. The latter is proportional to the average force acting locally on species s, which is the thermodynamic force, equal to minus the gradient of the thermodynamic potential. In the local coupling approximation the mobility appears as a proportionality constant M. For spontaneous processes near equilibrium it is important that a noise term T] t) is retained [146]. Thus dynamic equations of the form... [Pg.26]

We consider a two state system, state A and state B. A state is defined as a domain in phase space that is (at least) in local equilibrium since thermodynamic variables are assigned to it. We assume that A or B are described by a local canonical ensemble. There are no dark or hidden states and the probability of the system to be in either A or in B is one. A phenomenological rate equation that describes the transitions between A and B is... [Pg.276]

HYBOT-Plus (hydrogen bonding thermodynamics, calculation of local and molecular physicochemical descriptors) http //www.timtec.net/soJiware/hybot-plus.htm... [Pg.433]

Next we consider how to evaluate the factor 6p. We recognize that there is a local variation in the Gibbs free energy associated with a fluctuation in density, and examine how this value of G can be related to the value at equilibrium, Gq. We shall use the subscript 0 to indicate the equilibrium value of free energy and other thermodynamic quantities. For small deviations from the equilibrium value, G can be expanded about Gq in terms of a Taylor series ... [Pg.681]

Minimal Energy Requirements. The relative effect of the cost of the energy on the cost of the freshwater produced depends on local conditions, and is up to one-half of the total. In attempting to reduce this cost, it is of interest to determine the minimal energy amount thermodynamically needed for separating the water from the saline solution. The physical background to this will be introduced in a simple example. Because of the negligible... [Pg.240]

Modern theoretical developments in the molecular thermodynamics of liquid-solution behavior are often based on the concept local... [Pg.532]

For the analysis heat and mass transfer in concrete samples at high temperatures, the numerical model has been developed. It describes concrete, as a porous multiphase system which at local level is in thermodynamic balance with body interstice, filled by liquid water and gas phase. The model allows researching the dynamic characteristics of diffusion in view of concrete matrix phase transitions, which was usually described by means of experiments. [Pg.420]

The evolution of T, is just an exercise in mesoscale thermodynamics [13]. These expressions, in combination with (7.54), incorporate concepts of heterogeneous deformation into a eonsistent mierostruetural model. Aspects of local material response under extremely rapid heating and cooling rates are still open to question. An important contribution to the micromechanical basis for heterogeneous deformation would certainly be to establish appropriate laws of flow-stress evolution due to rapid thermal cycling that would provide a physical basis for (7.54). [Pg.243]

These corrosion parameters have to be modified for time- and place-related reaction velocities [6]. Different local removal rates are in general due to differences in composition or nonuniform surface films, where both thermodynamic and... [Pg.31]

Local Thermodynamic Equilibrium (LTE). This LTE model is of historical importance only. The idea was that under ion bombardment a near-surface plasma is generated, in which the sputtered atoms are ionized [3.48]. The plasma should be under local equilibrium, so that the Saha-Eggert equation for determination of the ionization probability can be used. The important condition was the plasma temperature, and this could be determined from a knowledge of the concentration of one of the elements present. The theoretical background of the model is not applicable. The reason why it gives semi-quantitative results is that the exponential term of the Saha-Eggert equation also fits quantum-mechanical expressions. [Pg.108]

At the beginning of the century, nobody knew that a small proportion of atoms in a crystal are routinely missing, even less that this was not a mailer of accident but of thermodynamic equilibrium. The recognition in the 1920s that such vacancies had to exist in equilibrium was due to a school of statistical thermodynamicians such as the Russian Frenkel and the Germans Jost, Wagner and Schollky. That, moreover, as we know now, is only one kind of point defect an atom removed for whatever reason from its lattice site can be inserted into a small gap in the crystal structure, and then it becomes an interstitial . Moreover, in insulating crystals a point defect is apt to be associated with a local excess or deficiency of electrons. [Pg.105]

The reader is referred to the original papers for detailed analysis, where the various components of entropy generation and irreversibility are defined. The advantage of this work is not only that it involves less approximation but also that it is revealing in terms of the basic thermodynamics. It should also be used by designers who should be able to see how design changes relate to increased or decreased local loss. [Pg.65]

Kinetic theories of adsorption, desorption, surface diffusion, and surface reactions can be grouped into three categories. (/) At the macroscopic level one proceeds to write down kinetic equations for macroscopic variables, in particular rate equations for the (local) coverage or for partial coverages. This can be done in a heuristic manner, much akin to procedures in gas-phase kinetics or, in a rigorous approach, using the framework of nonequihbrium thermodynamics. Such an approach can be used as long as... [Pg.439]

The reason is that thermodynamics describes the system in equihbrium as a state, i.e., the question of the initial conditions for the trajectories of all shared particles is unimportant. This means an enormous simphfication for the theory To be precise we do not need the system to be in equihbrium, but small parts of the system (each one containing a few atoms) should be describable by at least some local equihbrium, so that we can speak of a local temperature, for example. [Pg.855]

M. J. Vlot, S. Claassen, H. E. Huitema, J. P. v. d. Eerden. Monte Carlo simulation of racemic liquid mixtures thermodynamic properties and local structures. Mol Phys 97 19, 1997 M. J. Vlot, J. C. v. Miltenburg, H. A. Oonk, J. P. V. d. Eerden. Phase diagrams of scalemic mixtures. J Chem Phys 707 10102, 1997. [Pg.916]

So far, there have been few published simulation studies of room-temperature ionic liquids, although a number of groups have started programs in this area. Simulations of molecular liquids have been common for thirty years and have proven important in clarifying our understanding of molecular motion, local stmcture and thermodynamics of neat liquids, solutions and more complex systems at the molecular level [1 ]. There have also been many simulations of molten salts with atomic ions [5]. Room-temperature ionic liquids have polyatomic ions and so combine properties of both molecular liquids and simple molten salts. [Pg.157]

Thermodynamic information can also be obtained from simulations. Currently we are measuring the differences in chemical potential of various small molecules in dimethylimidazolium chloride. This involves gradually transforming one molecule into another and is a computationally intensive process. One preliminary result is that the difference in chemical potential of propane and dimethyl ether is about 17.5 kj/mol. These molecules are similar in size, but differ in their polarity. Not surprisingly, the polar ether is stabilized relative to the non-polar propane in the presence of the ionic liquid. One can also investigate the local arrangement of the ions around the solute and the contribution of different parts of the interaction to the energy. Thus, while both molecules have a favorable Lennard-Jones interaction with the cation, the main electrostatic interaction is that between the chloride ion and the ether molecule. [Pg.161]


See other pages where Thermodynamic local is mentioned: [Pg.346]    [Pg.346]    [Pg.372]    [Pg.21]    [Pg.166]    [Pg.468]    [Pg.591]    [Pg.16]    [Pg.94]    [Pg.38]    [Pg.64]    [Pg.480]    [Pg.325]    [Pg.397]    [Pg.313]    [Pg.232]    [Pg.1042]    [Pg.191]    [Pg.276]    [Pg.282]    [Pg.40]    [Pg.376]    [Pg.83]    [Pg.129]    [Pg.4]    [Pg.60]    [Pg.391]    [Pg.412]    [Pg.469]    [Pg.863]   
See also in sourсe #XX -- [ Pg.4 , Pg.10 , Pg.33 , Pg.43 , Pg.66 , Pg.73 , Pg.178 ]




SEARCH



© 2024 chempedia.info