Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal simultaneous

When the integration of sequences of simple columns was considered, it was observed that sequences with higher heat loads occurred simultaneously with more extreme levels. Heat integration always benefits from low heat loads and less extreme levels, as we shall see later in Chap. 12. Now consider the effect of thermal coupling arrangements on loads and levels. Figure 5.18 compares a... [Pg.154]

When initiator is first added the reaction medium remains clear while particles 10 to 20 nm in diameter are formed. As the reaction proceeds the particle size increases, giving the reaction medium a white milky appearance. When a thermal initiator, such as AIBN or benzoyl peroxide, is used the reaction is autocatalytic. This contrasts sharply with normal homogeneous polymerizations in which the rate of polymerization decreases monotonicaHy with time. Studies show that three propagation reactions occur simultaneously to account for the anomalous auto acceleration (17). These are chain growth in the continuous monomer phase chain growth of radicals that have precipitated from solution onto the particle surface and chain growth of radicals within the polymer particles (13,18). [Pg.278]

Carbonization. Next to combustion, carbonization represents one of the largest uses of coal (2,24—26). Carbonization is essentially a process for the production of a carbonaceous residue by thermal decomposition, accompanied by simultaneous removal of distillate, of organic substances. [Pg.63]

Heat/Solvent Recovery. The primary appHcation of heat pipes in the chemical industry is for combustion air preheat on various types of process furnaces which simultaneously increases furnace efficiency and throughput and conserves fuel. Advantages include modular design, isothermal tube temperature eliminating cold corner corrosion, high thermal effectiveness, high reHabiHty and options for removable tubes, alternative materials and arrangements, and replacement or add-on sections for increased performance (see Furnaces, fuel-FIREd). [Pg.514]

A20 initiators decompose thermally by cleavage of the two carbon—nitrogen bonds, either stepwise or simultaneously, to form two alkyl radicals and a nitrogen molecule ... [Pg.229]

Thermal or Flame Spray Process. The earliest experiments in metal spray used molten metal fed to a spray apparatus, where it was dispersed by a high speed air jet into tiny droplets and simultaneously blown onto the surface of the part to be covered. The metal solidified on contact. Modem processes use a more convenient source than premelted metal. Spray heads using a flame or an electrical arc to melt metal wires or powders directly are much more convenient. These are the only types used on a large scale in the United States. [Pg.134]

Miscellaneous. Electron beams can be used to decompose a gas such as silver chloride and simultaneously deposit silver metal. An older technique is the thermal decomposition of volatile and extremely toxic gases such as nickel carbonyl [13463-39-3] Ni(CO)4, to form dense deposits or dendritic coatings by modification of coating parameters. [Pg.137]

The most innovative photohalogenation technology developed in the latter twentieth century is that for purposes of photochlorination of poly(vinyl chloride) (PVC). More highly chlorinated products of improved thermal stabiUty, fire resistance, and rigidity are obtained. In production, the stepwise chlorination may be effected in Hquid chlorine which serves both as solvent for the polymer and reagent (46). A soHd-state process has also been devised in which a bed of microparticulate PVC is fluidized with CI2 gas and simultaneously irradiated (47). In both cases the reaction proceeds, counterintuitively, to introduce Cl exclusively at unchlorinated carbon atoms on the polymer backbone. [Pg.391]

Thermal printing usually involves passing materials over a full-width array of electronically controlled heaters (a thermal printhead). This marks thousands of spots simultaneously, so pages print relatively quickly. Image data to control the printhead usually come from computer systems. Black-and-white and full-color systems are both practical. Color is slower and more cosdy to purchase and use, primarily because this involves three or four successive printing operations, one for each color used. [Pg.50]

An excess of crotonaldehyde or aUphatic, ahcyhc, and aromatic hydrocarbons and their derivatives is used as a solvent to produce compounds of molecular weights of 1000—5000 (25—28). After removal of unreacted components and solvent, the adduct referred to as polyester is decomposed in acidic media or by pyrolysis (29—36). Proper operation of acidic decomposition can give high yields of pure /n j ,/n7 j -2,4-hexadienoic acid, whereas the pyrolysis gives a mixture of isomers that must be converted to the pure trans,trans form. The thermal decomposition is carried out in the presence of alkaU or amine catalysts. A simultaneous codistillation of the sorbic acid as it forms and the component used as the solvent can simplify the process scheme. The catalyst remains in the reaction batch. Suitable solvents and entraining agents include most inert Hquids that bod at 200—300°C, eg, aUphatic hydrocarbons. When the polyester is spHt thermally at 170—180°C and the sorbic acid is distilled direcdy with the solvent, production and purification can be combined in a single step. The solvent can be reused after removal of the sorbic acid (34). The isomeric mixture can be converted to the thermodynamically more stable trans,trans form in the presence of iodine, alkaU, or sulfuric or hydrochloric acid (37,38). [Pg.283]

Molecules vibrate at fundamental frequencies that are usually in the mid-infrared. Some overtone and combination transitions occur at shorter wavelengths. Because infrared photons have enough energy to excite rotational motions also, the ir spectmm of a gas consists of rovibrational bands in which each vibrational transition is accompanied by numerous simultaneous rotational transitions. In condensed phases the rotational stmcture is suppressed, but the vibrational frequencies remain highly specific, and information on the molecular environment can often be deduced from hnewidths, frequency shifts, and additional spectral stmcture owing to phonon (thermal acoustic mode) and lattice effects. [Pg.311]

Hyperbranched polyurethanes are constmcted using phenol-blocked trifunctional monomers in combination with 4-methylbenzyl alcohol for end capping (11). Polyurethane interpenetrating polymer networks (IPNs) are mixtures of two cross-linked polymer networks, prepared by latex blending, sequential polymerization, or simultaneous polymerization. IPNs have improved mechanical properties, as weU as thermal stabiHties, compared to the single cross-linked polymers. In pseudo-IPNs, only one of the involved polymers is cross-linked. Numerous polymers are involved in the formation of polyurethane-derived IPNs (12). [Pg.344]

Wood preservatives ate appHed either from an oil system, such as creosote, petroleum solutions of pentachlorophenol, or copper naphthanate, or a water system. Oil treatments ate relatively inert with wood material, and thus, have Htde effect on mechanical properties. However, most oil treatments require simultaneous thermal treatments, which ate specifically limited in treating standards to preclude strength losses (24). [Pg.327]

Reaction Formed Ceramics. A variety of specialty ceramics are produced by a combination of a chemical reaction and growth, or by simultaneous chemical reaction and consoHdation using relatively novel ceramic reaction forming and thermal consoHdation processes. Reaction forming processes provide the potential of producing unique ceramics and ceramic composites and high purity ceramics for specialty appHcations. [Pg.313]

Other Routes. A unique process that produces vinyl chloride, trichloroethylene, dichloroethane, and trichloroethane simultaneously has been developed by Produits Chemiques Pechiney-Saint-Gobain in France (31). Dichloroethylene is chlorinated directly at low temperature to tetrachloroethane, which is then thermally cracked to give trichloroethylene and hydrochloric acid. The dichloroethylene feed is coproduced with vinyl chloride in a hot chlorination reactor, using chlorine and ethylene as feedstocks. [Pg.24]

Thin films of photochromic glass containing silver haUde have been produced by simultaneous vacuum deposition of siUcon monoxide, lead siUcate, aluminum chloride, copper (I) chloride, and silver haUdes (9). Again, heat treatment (120°C for several hours) after vacuum deposition results in the formation of photochromic silver haUde crystaUites. Photochemical darkening and thermal fade rates are much slower than those of the standard dispersed systems. [Pg.162]


See other pages where Thermal simultaneous is mentioned: [Pg.131]    [Pg.139]    [Pg.131]    [Pg.139]    [Pg.395]    [Pg.85]    [Pg.440]    [Pg.167]    [Pg.275]    [Pg.427]    [Pg.24]    [Pg.39]    [Pg.314]    [Pg.328]    [Pg.8]    [Pg.150]    [Pg.222]    [Pg.547]    [Pg.353]    [Pg.135]    [Pg.115]    [Pg.130]    [Pg.443]    [Pg.226]    [Pg.241]    [Pg.10]    [Pg.560]    [Pg.199]    [Pg.201]    [Pg.104]    [Pg.476]    [Pg.295]    [Pg.437]    [Pg.341]    [Pg.471]    [Pg.562]    [Pg.313]   


SEARCH



Characterization simultaneous thermal analyzer

Composites Simultaneous Thermal Analysis

DTA-EGD-GC Coupled Simultaneous Thermal Analysis Curves

Experiments using Simultaneous Thermal Analyzer

Experiments using the simultaneous thermal analyzer

STA (simultaneous thermal analysis

Simultaneous Thermal Analysis Methods

Simultaneous Thermal Analysis Techniques

Simultaneous Thermal Analyzer

Simultaneous Thermogravimetry-Differential Thermal Analysis (TG-DTA)

Simultaneous thermal analysi

Simultaneous thermal analysis

Simultaneous thermal analysis instrumentation

Simultaneous thermal analysis-mass spectrometry

Simultaneous thermal analyzer-FTIR

Simultaneous thermal analyzer-evolved

Simultaneous thermal and chemical

Thermal analysis simultaneous analyzers

Thermal flows, simultaneous

© 2024 chempedia.info