Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal decomposition of

Palmer et al have studied the pyrolysis of C302 at temperatures in the range 900-1100 °K by following the rate of carbon deposition from a He stream containing 0.1-0.5 mole % C302. The reaction was first order in C302 and was inhibited by the addition of CO a substance other than C302 or CO was responsible for carbon deposition at the wall. Reaction (1) and its reverse [Pg.48]


Reboiler temperature increases with a limit often set by thermal decomposition of the material being vaporized, causing excessive fouling. [Pg.76]

B.p. — 29X. Monomer used to form polymers (only under rather drastic conditions) or copolymers with C2F4 and vinylidene fluoride, CH2 = CF2. Hexafluoropropene may be prepared by thermal decomposition of CF3CF2CF2C02Na or is prepared commercially by low pressure pyrolysis of C2F4. [Pg.203]

Tellurium monoxide, TeO. Black solid resulting from thermal decomposition of TeSOj (Te plus SO,). [Pg.387]

H2S is found with the reservoir gas and dissolved in the crude (< 50 ppm by weight), but it is formed during refining operations such as catalytic cracking, hydrodesulfurization, and thermal cracking or by thermal decomposition of sulfur[Pg.322]

Johnston H S 1951 Interpretation of the data on the thermal decomposition of nitrous oxide J. Chem. Phys. 19 663-7... [Pg.1085]

Oxygen can also be prepared by the thermal decomposition of certain solid compounds containing it. These include oxides of the more noble metals, for example of mercury or silver ... [Pg.260]

Pure oxygen is conveniently prepared by the thermal decomposition of potassium manganate(VII) ... [Pg.260]

Tellurium trioxide, TeOa, is an orange yellow powder made by thermal decomposition of telluric(VI) acid Te(OH)g. It is a strong oxidising agent which will, like H2Se04, oxidise hydrogen chloride to chlorine. It dissolves in hot water to give telluric(VI) acid. This is a weak acid and quite different from sulphuric and selenic acids. Two series of salts are known. [Pg.305]

Action of nitrous acid. To a few ml. of 20% NaNO, solution add a few drops of cold dil. acetic acid. Pour the mixture into a cold aqueous solution of glycine, and note the brisk evolution of nitrogen. NH CH COOH -h HNO2 = HO CH2COOH + N + H O. Owing to the insolubility of cystine in acetic acid use a suspension in dU. acetic acid for this test. In each case care must be taken not to confuse the evolution of nitrogen with any possible thermal decomposition of the nitrous acid cf. footnote, p, 360). [Pg.381]

The controlled thermal decomposition of dry aromatic diazonium fluoborates to yield an aromatic fluoride, boron trifluoride and nitrogen is known as the Schiemann reaction. Most diazonium fluoborates have definite decomposition temperatures and the rates of decomposition, with few exceptions, are easily controlled. Another procedure for preparing the diazonium fluoborate is to diazotise in the presence of the fluoborate ion. Fluoboric acid may be the only acid present, thus acting as acid and source of fluoborate ion. The insoluble fluoborate separates as it is formed side reactions, such as phenol formation and coupling, are held at a minimum temperature control is not usually critical and the temperature may rise to about 20° without ill effect efficient stirring is, however, necessary since a continuously thickening precipitate is formed as the reaction proceeds. The modified procedure is illustrated by the preparation of -fluoroanisole ... [Pg.594]

The thermal decomposition of ammonium succinate gives a good yield of succlnimlde ... [Pg.840]

Silicon is prepared commercially by heating silica and carbon in an electric furnace, using carbon electrodes. Several other methods can be used for preparing the element. Amorphous silicon can be prepared as a brown powder, which can be easily melted or vaporized. The Gzochralski process is commonly used to produce single crystals of silicon used for solid-state or semiconductor devices. Hyperpure silicon can be prepared by the thermal decomposition of ultra-pure trichlorosilane in a hydrogen atmosphere, and by a vacuum float zone process. [Pg.33]

It can be isolated by elecytrolysis of the fused cyanide and by a number of other methods. Very pure, gas-free cesium can be prepared by thermal decomposition of cesium azide. [Pg.89]

Uranium can be prepared by reducing uranium halides with alkali or alkaline earth metals or by reducing uranium oxides by calcium, aluminum, or carbon at high temperatures. The metal can also be produced by electrolysis of KUF5 or UF4, dissolved in a molten mixture of CaCl2 and NaCl. High-purity uranium can be prepared by the thermal decomposition of uranium halides on a hot filament. [Pg.200]

The (thermal) decomposition of thiazol-2-yldiazonium salts in a variety of solvents at 0 C in presence of alkali generates thiazol-2-yl radicals (413). The same radicals result from the photolysis in the same solvents of 2-iodothiazole (414). Their electrophilic character is shown by their ability to attack preferentially positions of high rr-electron density of aromatic substrates in which they are generated (Fig. 1-21). The major... [Pg.111]

The thermal decomposition of thia2ol-2-yl-carbonyl peroxide in benzene, bromobenzene, or cumene affords thiazole together with good yields of 2-arylthiazoles but negligible amounts of esters. Thiazol-4-ylcarbonyl peroxide gives fair yields of 4-arylthiazoles, but the phenyl ester is also a major product in benzene, indicating reactions of both thiazol-4-yl radicals and thiazol-4-carbonyloxy radicals. Thiazole-5-carbonyl peroxide gives... [Pg.112]

In agreement with the theory of polarized radicals, the presence of substituents on heteroaromatic free radicals can slightly affect their polarity. Both 4- and 5-substituted thiazol-2-yl radicals have been generated in aromatic solvents by thermal decomposition of the diazoamino derivative resulting from the reaction of isoamyl nitrite on the corresponding 2-aminothiazole (250,416-418). Introduction in 5-position of electron-withdrawing substituents slightly enhances the electrophilic character of thiazol-2-yl radicals (Table 1-57). [Pg.113]

The evidence obtained in compaction experiments is of particular interest in the present context. Figure 3.22 shows the results obtained by Avery and Ramsay for the isotherms of nitrogen on compacts of silica powder. The hysteresis loop moved progressively to the left as the compacting pressure increased, but the lower closure point did not fall below a relative pressure of 0-40. Similar results were obtained in the compaction of zirconia powder both by Avery and Ramsay (cf. Fig. 4.5), and by Gregg and Langford, where the lower closure point moved down to 0-42-0-45p° but not below. With a mesoporous magnesia (prepared by thermal decomposition of the hydrated carbonate) the position of the closure point... [Pg.154]

Synthesis gas is obtained either from methane reforming or from coal gasification (see Coal conversion processes). Telescoping the methanol carbonylation into an esterification scheme furnishes methyl acetate directly. Thermal decomposition of methyl acetate yields carbon and acetic anhydride,... [Pg.68]

The Acetic Acid Process. Prior to the energy crisis of the 1970s, acetic anhydride was manufactured by thermal decomposition of acetic acid at pressures of 15—20 kPa (2.2—2.9 psi) (22), beginning with the first step ... [Pg.76]

O. E. Wating and G. Krastins, The Kinetics and Mechanism of Thermal Decomposition of Nitroglycerin, Report 5746, NOL, White Oaks, Md., 1958. [Pg.27]

C2HgNg H4O2P2 (60). The pyrophosphate is reported to be only soluble to the extent of 0.09 g/100 mL water, whereas melamine orthophosphate is soluble to 0.35 g/mL. The pyrophosphate is the most thermally stable. Melamine orthophosphate is converted to the pyrophosphate with loss of water on heating. AH three are available as finely divided soflds. AH are used commercially in flame-retardant coatings (qv) and from patents also appear to have utihty in a wide variety of thermoplastics and thermosets. A detaHed study of the thermal decomposition of the these compounds has been pubHshed (61). [Pg.476]

Phosphoms oxyfluoride is a colorless gas which is susceptible to hydrolysis. It can be formed by the reaction of PF with water, and it can undergo further hydrolysis to form a mixture of fluorophosphoric acids. It reacts with HF to form PF. It can be prepared by fluorination of phosphoms oxytrichloride using HF, AsF, or SbF. It can also be prepared by the reaction of calcium phosphate and ammonium fluoride (40), by the oxidization of PF with NO2CI (41) and NOCl (42) in the presence of ozone (43) by the thermal decomposition of strontium fluorophosphate hydrate (44) by thermal decomposition of CaPO F 2H20 (45) and reaction of SiF and P2O5 (46). [Pg.225]

Pyrolysis. Pyrolysis, eg, retorting, destmctive distillation, carbonization, is the thermal decomposition of an organic material ia the absence of... [Pg.21]

Coal can be converted to gas by several routes (2,6—11), but often a particular process is a combination of options chosen on the basis of the product desired, ie, low, medium, or high heat-value gas. In a very general sense, coal gas is the term appHed to the mixture of gaseous constituents that are produced during the thermal decomposition of coal at temperatures in excess of 500°C (>930°F), often in the absence of oxygen (air) (see Coal CONVERSION PROCESSES, gasification) (3). A soHd residue (coke, char), tars, and other Hquids are also produced in the process ... [Pg.62]

Chemistry. Coal gasification iavolves the thermal decomposition of coal and the reaction of the carbon ia the coal, and other pyrolysis products with oxygen, water, and hydrogen to produce fuel gases such as methane by internal hydrogen shifts... [Pg.65]


See other pages where Thermal decomposition of is mentioned: [Pg.79]    [Pg.114]    [Pg.126]    [Pg.319]    [Pg.351]    [Pg.412]    [Pg.295]    [Pg.108]    [Pg.566]    [Pg.24]    [Pg.235]    [Pg.79]    [Pg.28]    [Pg.137]    [Pg.150]    [Pg.153]    [Pg.172]    [Pg.182]    [Pg.260]    [Pg.358]    [Pg.22]    [Pg.64]    [Pg.160]   


SEARCH



Thermal decomposition

© 2024 chempedia.info