Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Polyolefins

The physical properties of these fibers are compared with those of natural fibers and other synthetic fibers in Table 1. Additional property data may be found in compilations of the properties of natural and synthetic fibers (1). Apart from the polyolefins, acryhcs and nylon fibers are the lightest weight fibers on the market. Modacryhcs are considerably more dense than acryhcs, with a density about the same as wool and polyester. [Pg.274]

Density. Aciyhcs have a low specific giavity (1.12—1.19) compaied to all of the piimaiy natuial fibeis and most synthetic fibeis. Nylon has a similar specific gravity (1.14) and the polyolefins have lower specific gravities, eg, 0.90 for polypropylene. Again the modacryhcs and some aciyhcs with high levels of comonomer of low molar volume are exceptions. Verel and Dynel, for example, have specific gravities of 1.37 and 1.31, respectively. [Pg.277]

Quenched sheet is pulled horizontally from the stack and is then either wound on roUs or sheared into sheets of the required dimension. Among the polymers made into sheet this way are the polyolefins, poly(vinyl chloride), amorphous polyester, polycarbonate, and polyarjiate. [Pg.379]

Nickel also has been used as a dye site in polyolefin polymers, particularly fibers. When a nickel compound, eg, the stearate or bis(p-alkylphenol) monosulfide, is incorporated in the polyolefin melt which is subsequently extmded and processed as a fiber, it complexes with certain dyes upon solution treatment to yield bright fast-colored fibers which are useful in carpeting and other appHcations (189). Nickel stearate complexing of disperse mordant dyes has been studied (190). [Pg.15]

Table 10 contains some selected permeabiUty data including diffusion and solubiUty coefficients for flavors in polymers used in food packaging. Generally, vinyUdene chloride copolymers and glassy polymers such as polyamides and EVOH are good barriers to flavor and aroma permeation whereas the polyolefins are poor barriers. Comparison to Table 5 shows that the large molecule diffusion coefficients are 1000 or more times lower than the small molecule coefficients. The solubiUty coefficients are as much as one million times higher. Equation 7 shows how to estimate the time to reach steady-state permeation t if the diffusion coefficient and thickness of a film are known. [Pg.492]

Permeation in the vinyUdene chloride copolymer and the polyolefins is not affected by humidity the permeability and diffusion coefficient in the ethylene—vinyl alcohol copolymer can be as much as 1000 times greater with high humidity (14—17). [Pg.492]

Blends of isobutylene polymers with thermoplastic resins are used for toughening these compounds. High density polyethylene and isotactic polypropylene are often modified with 5 to 30 wt % polyisobutylene. At higher elastomer concentration the blends of butyl-type polymers with polyolefins become more mbbery in nature, and these compositions are used as thermoplastic elastomers (98). In some cases, a halobutyl phase is cross-linked as it is dispersed in the polyolefin to produce a highly elastic compound that is processible in thermoplastic mol ding equipment (99) (see Elastomers, synthetic-thermoplastic). ... [Pg.487]

These models are usually overall plant or corporation oriented and are geared toward running the business. If utilities are included, they are probably keyed to production levels of operating units or, in the case of the polyolefin plant, a characteristic set of utilities is charged against each unit of each specialty product. Often, recycle streams within segments of the operation are not pertinent and not included. [Pg.347]

The decade 1930-1940 saw the initial industrial development of four of today s major thermoplastics polystyrene, poly(vinyl chloride) (PVC), the polyolefins and poly(methyl methacrylate). Since all these materials can be considered formally as derivatives of ethylene they have, in the past, been referred to as ethenoid plastics however, the somewhat inaccurate term vinyl plastics is now usually preferred. [Pg.6]

The tonnage of plasticisers consumed each year exceeds the annual tonnage consumption of most plastics materials. Only PVC, the polyolefins, the styrene polymers, the aminoplastics and, possibly, the phenolics are used in large quantity. [Pg.330]

A large number of methacrylate polymers have been prepared in addition to poly(methyl methacrylate). In many respects the properties of these materials are analogous to those of the polyolefins described in Chapter 8. [Pg.421]

As is the case in the polyolefins, the polymethacrylates with branched side chains have higher softening points and are harder than their unbranched isomers. The effect of branching of Vicat Softening point is shown in Table 75.5.> ... [Pg.421]

The negligible water absorption avoids the need for predrying granules. The low specific heat (compared with polyethylene) enables the polymer to be rapidly heated in injection cylinders, which therefore have a higher plasticising capacity with polystyrene than with polyethylene. The setting-up rates in the injection moulds are also faster than with the polyolefins so that faster cycles are also possible. [Pg.456]

Nylon 11 is also used in powder form in spraying and fluidised bed dipping to produce chemical-resistant coatings. Although more expensive than the polyolefin and PVC powders, it is of interest because of its hardness, abrasion resistance and petrol resistance. [Pg.504]

With most homopolymers and copolymers the apparent viscosity is less dependent on temperature and shear stress (up to 10 dyn/cm ) than that of the polyolefins, thus simplifying die design. On the other hand the melt has a low elasticity and strength and this requires that extruded sections be... [Pg.542]

Because of a small dipole polarisation effect the dielectric constant is somewhat higher than that for PTFE and the polyolefins but lower than those of polar polymers such as the phenolic resins. The dielectric constant is almost... [Pg.569]

The most important of the esters is cellulose acetate. This material has been extensively used in the manufacture of films, moulding and extrusion compounds, fibres and lacquers. As with all the other cellulose polymers it has, however, become of small importance to the plastics industry compared with the polyolefins, PVC and polystyrene. In spite of their higher cost cellulose acetate-butyrate and cellulose propionate appear to have retained their smaller market because of their excellent appearance and toughness. [Pg.616]

Low surface energy substrates, such as polyethylene or polypropylene, are generally difficult to bond with adhesives. However, cyanoacrylate-based adhesives can be effectively utilized to bond polyolefins with the use of the proper primer/activa-tor on the surface. Primer materials include tertiary aliphatic and aromatic amines, trialkyl ammonium carboxylate salts, tetraalkyl ammonium salts, phosphines, and organometallic compounds, which are initiators for alkyl cyanoacrylate polymerization [33-36]. The primer is applied as a dilute solution to the polyolefin surface, solvent is allowed to evaporate, and the specimens are assembled with a small amount of the adhesive. With the use of primers, adhesive strength can be so strong that substrate failure occurs during the course of the shear tests, as shown in Fig. 11. [Pg.862]

The mechanism by which the primers are thought to work is relatively straightforward. The primer first diffuses into the polyolefin surface, and subsequently becomes entangled in the polyolefin. The primer molecule can then act as an anchor in the substrate surface for the adhesive polymer, which forms after the primer initiates polymerization of the alkyl cyanoacrylate monomer [37]. [Pg.862]

At present, high-temperature stabilization of polyolefins is still misunderstood besides, this problem presents serious difficulties. Stabilization of thermal oxidation and photoinduced destruction with the use of stabilizers in this case is inefficient, since at high temperatures these stabilizers are easily evaporated out of the polyolefin melt and decomposed with the formation of radicals capable of initiating additional kinetic chains of destruction. [Pg.83]

It has been only found that some antioxidants and light stabilizers show the ability for partial inhibition of thermal destruction of the polyolefins. [Pg.83]

Individual families of plastics such as polyolefins, polystyrenes, nylons, and polyvinyl chlorides are compounded to produce many different individual plastics. The polyolefin is actually made up of its families of poly-ethylenes, polypropylenes, etc. In turn the... [Pg.419]

Ethylene-vinyl acetate EVAs (in the polyolefin family) have exceptional barrier properties, good clarity and gloss, stress-crack resistance, low temperature toughness/retains flexibility, adhesion, resistance to UV radiation, etc. They have low resistance to heat and solvents. [Pg.427]

Radical induced grafting may be carried out in solution, in the melt phase,292 29 or as a solid state process.296 This section will focus on melt phase grafting to polyolefin substrates but many of the considerations are generic. The direct grafting of monomers onto polymers, in particular polyolefins, in the melt phase by reactive extrusion has been widely studied. Most recently, the subject has been reviewed by Moad1 9 and by Russell.292 More details on reactive extrusion as a technique can be found in volumes edited by Xanthos," A1 Malaika and Baker et a 21 7 The process most often involves combining a frcc-radical initiator (most commonly a peroxide) and a monomer or macromonomer with the polyolefin as they are conveyed through the extruder. Monomers commonly used in this context include MAII (Section 7.6.4.1), maleimidc derivatives and malcate esters (Section 7.6.4.2), (meth)acrylic acid and (meth)acrylate esters (Section 7.6.43), S, AMS and derivatives (Section 7.6.4.4), vinylsilancs (Section 7.6.4.5) and vinyl oxazolines (Section 7.6.4.6). [Pg.390]

It is also necessary to select the initiator according to the particular monomer(s) and the substrate. Factors to consider in this context, aside from initiator half-lives and decomposition rates, are the partition coefficient ot the initiator between the monomer and polyolefin phases and the reactivity of the monomer vs the polyolefin towards the initiator-derived radicals. [Pg.391]


See other pages where The Polyolefins is mentioned: [Pg.313]    [Pg.131]    [Pg.331]    [Pg.419]    [Pg.525]    [Pg.327]    [Pg.450]    [Pg.319]    [Pg.348]    [Pg.62]    [Pg.269]    [Pg.421]    [Pg.452]    [Pg.542]    [Pg.414]    [Pg.743]    [Pg.809]    [Pg.73]    [Pg.92]    [Pg.422]    [Pg.95]    [Pg.427]    [Pg.390]    [Pg.391]    [Pg.392]    [Pg.395]   


SEARCH



BAT for the production of polyolefins

Current Requirements for the Processing of Polyolefins

Electron Beam Process in the Manufacture of Polyolefin Foams

Flow diagram of the manufacturing process for polyolefin foams using radiation cross-linking

Mechanisms involved in the photolysis of thermally oxidized polyolefins during processing

Oxo-biodegradation of polyolefins in the environment

Polyolefins Under the Action of Light

Polyolefins in the absence of oxygen

The Importance of Proper Microstructural Determination and Control in Polyolefins

© 2024 chempedia.info