Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

THE ENTHALPY OF CHEMICAL CHANGE

Every molecule is capable of weakly interacting with any solid surface through van der Waals forces. The enthalpy change associated with this weak adsorption mode, called physisorption, is typically 40 kJ moF or less, which is far lower than the enthalpy of chemical bond formation. Even though physisorbed molecules are not activated for catalysis, they may serve as precursors to chemisorbed molecules. More than one layer of molecules can physisorb on a surface since only van der Waals interactions are involved. The number of physisorbed molecules that occupy... [Pg.140]

Chemistry can be divided (somewhat arbitrarily) into the study of structures, equilibria, and rates. Chemical structure is ultimately described by the methods of quantum mechanics equilibrium phenomena are studied by statistical mechanics and thermodynamics and the study of rates constitutes the subject of kinetics. Kinetics can be subdivided into physical kinetics, dealing with physical phenomena such as diffusion and viscosity, and chemical kinetics, which deals with the rates of chemical reactions (including both covalent and noncovalent bond changes). Students of thermodynamics learn that quantities such as changes in enthalpy and entropy depend only upon the initial and hnal states of a system consequently thermodynamics cannot yield any information about intervening states of the system. It is precisely these intermediate states that constitute the subject matter of chemical kinetics. A thorough study of any chemical reaction must therefore include structural, equilibrium, and kinetic investigations. [Pg.1]

Thermochemistry is concerned with the study of thermal effects associated with phase changes, formation of chemical compouncls or solutions, and chemical reactions in general. The amount of heat (Q) liberated (or absorbed) is usually measured either in a batch-type bomb calorimeter at fixed volume or in a steady-flow calorimeter at constant pressure. Under these operating conditions, Q= Q, = AU (net change in the internal energy of the system) for the bomb calorimeter, while Q Qp = AH (net change in the enthalpy of the system) for the flow calorimeter. For a pure substance. [Pg.351]

An electrochemical cell is a device by means of which the enthalpy (or heat content) of a spontaneous chemical reaction is converted into electrical energy conversely, an electrolytic cell is a device in which electrical energy is used to bring about a chemical change with a consequent increase in the enthalpy of the system. Both types of cells are characterised by the fact that during their operation charge transfer takes place at one electrode in a direction that leads to the oxidation of either the electrode or of a species in solution, whilst the converse process of reduction occurs at the other electrode. [Pg.77]

This chapter introduces the first law of thermodynamics and its applications in three main parts. The first part introduces the basic concepts of thermodynamics and the experimental basis of the first law. The second part introduces enthalpy as a measure of the energy transferred as heat during physical changes at constant pressure. The third part shows how the concept of enthalpy is applied to a variety of chemical changes, an important aspect of bioenergetics, the use of energy in biological systems. [Pg.336]

The heat absorbed in a process at constant pressure is equal to AH, the increase in the enthalpy of the system. It can thus be said that the heat change accompanying a chemical reaction is equal to the difference between the total heat content of the products and that of the reactants, at constant pressure and temperature conditions. This quantity is called the heat of reaction, AH, and can be expressed as follows... [Pg.231]

The free energy change in a chemical reaction is expressed in the same way as the enthalpy of the reaction is expressed. For example, the free energy change in the reaction... [Pg.241]

The science of chemical kinetics is concerned primarily with chemical changes and the energy and mass fluxes associated therewith. Thermodynamics, on the other hand, is concerned with equilibrium systems. .. systems that are undergoing no net change with time. This chapter will remind the student of the key thermodynamic principles with which he should be familiar. Emphasis is placed on calculations of equilibrium extents of reaction and enthalpy changes accompanying chemical reactions. [Pg.5]

The effect of pressure on AG° and AH0 depends on the choice of standard states employed. When the standard state of each component of the reaction system is taken at 1 atm pressure, whether the species in question is a gas, liquid, or solid, the values of AG° and AH0 refer to a process that starts and ends at 1 atm. For this choice of standard states, the values of AG° and AH0 are independent of the system pressure at which the reaction is actually carried out. It is important to note in this connection that we are calculating the enthalpy change for a hypothetical process, not for the actual process as it occurs in nature. This choice of standard states at 1 atm pressure is the convention that is customarily adopted in the analysis of chemical reaction equilibria. [Pg.8]

From the chemical point of view, the solvent in which the CL experiment is carried out can have a dramatic influence on the efficiency of the CL reaction as solvation can alter the shapes, the depths, and the densities of the vibrational states of the potential surfaces representing the ground states of products and reactants and the lowest excited singlet state of the potential fluorophore. The alteration of the intersections of these potential energy surfaces can affect the enthalpies of reaction and the enthalpies of activation for dark and lumigenic reactions. In some cases, these changes will favor CL (if AH decreases relative to AHa) and in some cases, they will make it thermodynamically unfavorable for CL to occur. [Pg.72]

Most thermochemical calorimetric methods are used to determine enthalpy changes of chemical reactions. The reaction may give the enthalpy of interest directly or may represent a step in a thermodynamic cycle needed to obtain an enthalpy of interest. These techniques are also very suitable for direct determination of enthalpy of mixing in the liquid state or indirect determination of enthalpy of mixing in the solid state. Calorimetric methods for studies of chemical reactions involving solids can be divided into three main categories ... [Pg.313]

Heat effects accompanying chemical reaction influence equilibrium constants and compositions as well as rates of reaction. The enthalpy change of reaction, AHr, is the difference between the enthalpies of formation of the participants. It is positive for endothermic reactions and negative for exothermic ones. This convention is the opposite of that for heats of reaction, so care should be exercised in applications of this quantity. Enthalpies of formation are empirical data, most often known at a standard temperature, frequently at 298 K. The Gibbs energies of formation, AGfl likewise are empirical data. [Pg.260]

Background Thermochemistry is the study of heat changes and transfers associated with chemical reactions. In this thermochemical laboratory study, you will determine the enthalpy change that occurs when a strong base, sodium hydroxide, reacts with a strong acid, hydrochloric acid. Other mixtures studied will include ammonium chloride mixed with sodium hydroxide and ammonia mixed with hydrochloric acid. These three reactions are represented as ... [Pg.306]

Let us return to the thermal decomposition of Fe(CO)(l,3-C4H6)2. Once the calibration constant is known, the enthalpy of the net process 9.10 can be calculated as the product of s and the area (A + B). The next step is to correct this value to 298.15 K by using heat capacity data. This exercise is, however, complicated by the cyclobutadiene polymerization. Brown et al. analyzed the reaction products by mass spectrometry and found several oligomers, in particular the dimer (C4H6)2 and the trimer (C4H6)3 [163]. With such a mixture, it is difficult to ascribe the observed enthalpy change to a well-defined chemical reaction. This is discussed in the paper by Brown and colleagues, who were nevertheless able to recommend a value for the standard enthalpy of formation of the iron-olefin... [Pg.143]

The enthalpy change of a chemical reaction is known as the enthalpy of reaction, AHrxn- The enthalpy of reaction is dependent on conditions such as temperature and pressure. Therefore, chemists often talk about the standard enthalpy of reaction, AH°rxn - the enthalpy change of a chemical reaction that occurs at SATP (25 C and 100 kPa). Often, Alf n is written simply as AW°, The symbol is called nought. It refers to a property of a substance at a standard state or under standard conditions. You may see the enthalpy of reaction referred to as the heat of reaction in other chemistry books. [Pg.223]

In section 5.1, you learned about the energy changes that accompany physical changes, chemical reactions, and nuclear reactions. You learned how to represent energy changes using thermochemical equations and diagrams. In the next section, you will determine the enthalpy of a reaction by experiment. [Pg.232]

Throughout the remainder of this book, the Greek letter delta (A) will be used to symbolize change. Chemists use the term enthalpy for the heat content of a substance or the heat of a reaction, so the H in the previous equation means enthalpy. The equation states that the change in enthalpy during a reaction equals the enthalpy of the products minus the enthalpy of the reactants. You can consider enthalpy to be chemical energy that is commonly manifested as heat. [Pg.141]

The enthalpy of formation or reaction can be either measmed directly or calculated using Hess s law. This states that the overall change in the enthalpy of a chemical reaction is the same whether it takes place in one step or in several steps. Therefore... [Pg.53]

Since the nature of the hydride chemical shifts, particularly in transition metal hydride complexes, is not simple [32], there is no reliable correlation between Sh and the enthalpy of dihydrogen bonding. Nevertheless, the chemical shifts of hydride resonances and their changes with temperature and the concentration of proton-donor components, for example, can be used to obtain the energy parameters for dihydrogen bonding in solution. As earlier, the enthalpy (A/f°) and entropy (AS°) values can be obtained on the basis of equilibrium constants determined at different temperatures. Let us demonstrate some examples of such determinations. [Pg.80]


See other pages where THE ENTHALPY OF CHEMICAL CHANGE is mentioned: [Pg.336]    [Pg.361]    [Pg.13]    [Pg.415]    [Pg.66]    [Pg.103]    [Pg.336]    [Pg.361]    [Pg.13]    [Pg.415]    [Pg.66]    [Pg.103]    [Pg.361]    [Pg.251]    [Pg.10]    [Pg.401]    [Pg.239]    [Pg.242]    [Pg.276]    [Pg.351]    [Pg.18]    [Pg.92]    [Pg.256]    [Pg.3]    [Pg.193]    [Pg.31]    [Pg.179]    [Pg.105]    [Pg.234]    [Pg.261]    [Pg.175]    [Pg.322]    [Pg.331]    [Pg.308]    [Pg.308]    [Pg.10]    [Pg.65]   


SEARCH



Chemical change enthalpy

Chemical changes

Chemical enthalpy

The enthalpy

© 2024 chempedia.info