Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Delayers

These people dread the process so much that they either postpone it too long or handle it in such a cursory way that it brings little or no satisfaction. They say, It s such an ugly subject that I just can t get around to doing anything at this point. Besides, what s the hurry Laws keep changing, and I ll have plenty of time later. All it takes is a few hours, and I m going to be around for a while.  [Pg.241]


The plateau production rates for cases A and B differ significantly from that in case C, which has a lower but longer plateau. The advantage of profile C is that it requires smaller facilities and probably less wells to produce the same UR. This advantage in reduced costs must be considered using economic criteria against the delayed production of oil (which is bad for the cashflow). One additional advantage of profile C is that the... [Pg.208]

This result is valid when a < 1 this hypothesis is verified since ultrasonic waves are attenuated in materials. For separating two echoes, we detect the peaks and measure the delay between them. [Pg.225]

Real Time Radiography (RTR) is an advanced method of radiography in which the image is formed while the job is exposed to ionising radiation. RTR is often applied to objects on assembly lines for rapid inspection. Accept-or-reject decisions may be made immediately without the delay or expense of film development. The main advantages of RTR are thus, reduction in inspection cost and processing time. [Pg.443]

The last modification in the Rayleigh integral concerns the delay of propagation between the two points which is simply the time taken by the energy to propagate along the path of stationary phase. It is denoted T and given by,... [Pg.737]

After amplification both signals change their initial phases due to the delay r of the amplifier unblank (r = 0.1 - 0.5 ms), phase shift in it and wave propagation in passive vibrator s elements. All the mentioned phase changes are proportional to the frequency. The most contribution of them has unblank delay z. Thus frequency variations changes the initial phases) f/, and j(/c) of both signals and their difference A - Vi ... [Pg.828]

The acoustical device component is placed in water and is configured like a conventional impulse echo equipment. The ultrasound wave passed the delay path and enters the specimen container through a very thin plastic window. The backside of the container is a steel plate and will also be used as a reference reflector to measure pn. [Pg.867]

For the prototype equipment normal immersion inspection in water was selected instead of the delay line solution. [Pg.897]

Figure Al.6.22 (a) Sequence of pulses in the canonical echo experiment, (b) Polarization versus time for the pulse sequence in (a), showing an echo at a time delay equal to the delay between the excitation pulses. Figure Al.6.22 (a) Sequence of pulses in the canonical echo experiment, (b) Polarization versus time for the pulse sequence in (a), showing an echo at a time delay equal to the delay between the excitation pulses.
At still shorter time scales other techniques can be used to detenuiue excited-state lifetimes, but perhaps not as precisely. Streak cameras can be used to measure faster changes in light intensity. Probably the most iisellil teclmiques are pump-probe methods where one intense laser pulse is used to excite a sample and a weaker pulse, delayed by a known amount of time, is used to probe changes in absorption or other properties caused by the excitation. At short time scales the delay is readily adjusted by varying the path length travelled by the beams, letting the speed of light set the delay. [Pg.1124]

A typical noisy light based CRS experiment involves the splitting of a noisy beam (short autocorrelation time, broadband) into identical twin beams, B and B, tlnough the use of a Michelson interferometer. One ami of the interferometer is computer controlled to introduce a relative delay, x, between B and B. The twin beams exit the interferometer and are joined by a narrowband field, M, to produce the CRS-type third order polarization in the sample ([Pg.1209]

When a time window twice the duration of the delay time is used, perfect coincidence is at the centre of the time window and it is possible to make an accurate assessment of the background by considering the region to either side of the perfect coincidence region. An example of a time spectrum is shown m figure Bl.10.8. [Pg.1429]

Referring to figure BLIP. 7 consider electrons from the event under study as well as from other events all arriving at the two detectors. The electrons from the event under study are correlated in time and result in a peak in the time spectrum centred approximately at the delay time. There is also a background level due to events that bear no fixed time relation to each other. If the average rate of tlie background events in each detector is R and i 2> then the rate that two such events will be recorded within time Ax is given by i g, where... [Pg.1429]

Figure Bl.14.6. J -maps of a sandstone reservoir eore whieh was soaked in brine, (a), (b) and (e), (d) represent two different positions in the eore. For J -eontrast a saturation pulse train was applied before a standard spin-eeho imaging pulse sequenee. A full -relaxation reeovery eiirve for eaeh voxel was obtained by inerementing the delay between pulse train and imaging sequenee. M - ((a) and (e)) and r -maps ((b) and (d)) were ealeulated from stretehed exponentials whieh are fitted to the magnetization reeovery eurves. The maps show the layered stnieture of the sample. Presumably -relaxation varies spatially due to inliomogeneous size distribution as well as surfaee relaxivity of the pores. (From [21].)... Figure Bl.14.6. J -maps of a sandstone reservoir eore whieh was soaked in brine, (a), (b) and (e), (d) represent two different positions in the eore. For J -eontrast a saturation pulse train was applied before a standard spin-eeho imaging pulse sequenee. A full -relaxation reeovery eiirve for eaeh voxel was obtained by inerementing the delay between pulse train and imaging sequenee. M - ((a) and (e)) and r -maps ((b) and (d)) were ealeulated from stretehed exponentials whieh are fitted to the magnetization reeovery eurves. The maps show the layered stnieture of the sample. Presumably -relaxation varies spatially due to inliomogeneous size distribution as well as surfaee relaxivity of the pores. (From [21].)...
An interferometric method was first used by Porter and Topp [1, 92] to perfonn a time-resolved absorption experiment with a -switched ruby laser in the 1960s. The nonlinear crystal in the autocorrelation apparatus shown in figure B2.T2 is replaced by an absorbing sample, and then tlie transmission of the variably delayed pulse of light is measured as a fiinction of the delay This approach is known today as a pump-probe experiment the first pulse to arrive at the sample transfers (pumps) molecules to an excited energy level and the delayed pulse probes the population (and, possibly, the coherence) so prepared as a fiinction of time. [Pg.1979]

The detector D monitors the absorption of the probe beam as a function of the delay between the pulses given by xHc, where c is the speed of light and v is the difference between the optical path travelled by the probe and by the pump pulse. Adapted from [110],... [Pg.2127]

Figure B2.5.10. LIF signal of free Na atoms produced in the photodissociation of Nal. t - q is the delay between the photolysis pulse (at L) and the probe pulse. Adapted from [111]. Figure B2.5.10. LIF signal of free Na atoms produced in the photodissociation of Nal. t - q is the delay between the photolysis pulse (at L) and the probe pulse. Adapted from [111].
In contrast to the cell experiments of Gibilaro et al., it is now seen from equation (10.45) that measurement of the delay time gives no information about diffusion within the pellets this can be obtained only through equation (10.46) from measurements of the second moment. As in the case of the cell experiment, the results can also be Interpreted in terms of an "effective diffusion coefficient" associated with a Fick equation for the... [Pg.107]

Mixing the solution leads to convection, but the delay allows convection to cease. [Pg.527]

A dye molecule has one or more absorption bands in the visible region of the electromagnetic spectrum (approximately 350-700 nm). After absorbing photons, the electronically excited molecules transfer to a more stable (triplet) state, which eventually emits photons (fluoresces) at a longer wavelength (composing three-level system.) The delay allows an inverted population to build up. Sometimes there are more than three levels. For example, the europium complex (Figure 18.15) has a four-level system. [Pg.132]

To prevent such release, off gases are treated in Charcoal Delay Systems, which delay the release of xenon and krypton, and other radioactive gases, such as iodine and methyl iodide, until sufficient time has elapsed for the short-Hved radioactivity to decay. The delay time is increased by increasing the mass of adsorbent and by lowering the temperature and humidity for a boiling water reactor (BWR), a typical system containing 211 of activated carbon operated at 255 K, at 500 K dewpoint, and 101 kPa (15 psia) would provide about 42 days holdup for xenon and 1.8 days holdup for krypton (88). Humidity reduction is typically provided by a combination of a cooler-condenser and a molecular sieve adsorbent bed. [Pg.285]

Because of the delay in decomposition of the peroxide, oxygen evolution follows carbon dioxide sorption. A catalyst is required to obtain total decomposition of the peroxides 2 wt % nickel sulfate often is used. The temperature of the bed is the controlling variable 204°C is required to produce the best decomposition rates (18). The reaction mechanism for sodium peroxide is the same as for lithium peroxide, ie, both carbon dioxide and moisture are required to generate oxygen. Sodium peroxide has been used extensively in breathing apparatus. [Pg.487]


See other pages where The Delayers is mentioned: [Pg.26]    [Pg.225]    [Pg.226]    [Pg.830]    [Pg.261]    [Pg.267]    [Pg.1297]    [Pg.1426]    [Pg.1427]    [Pg.1427]    [Pg.1429]    [Pg.1507]    [Pg.1509]    [Pg.1538]    [Pg.1543]    [Pg.2126]    [Pg.2962]    [Pg.109]    [Pg.105]    [Pg.108]    [Pg.155]    [Pg.11]    [Pg.67]    [Pg.251]    [Pg.271]    [Pg.142]    [Pg.510]    [Pg.18]    [Pg.400]    [Pg.404]   


SEARCH



Factors Affecting the Performance of Delay Formulations

Nature of the Post-shock Delayed Metabolic Response

Production and uses of coke from aromatic residues by the delayed coking process

Solvent dynamics and the delayed recognition of Kramers theory

THE DELAY-OPTION STRATEGY

The Instrumental Gradient Delay (Dwell Time)

The Syntax for Using Pulses, Delays, Gradients and Decoupling

The balance for delayed neutron precursors

The delayed onset effect

The delayed-coincidence method using

Time delay and the density of states

Time-dependent Behavior of the Neutron Flux with Delayed Neutrons Neglected

Trapping above the potential barrier Time-delay in reaction dynamics

© 2024 chempedia.info