Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Cytochromes

Several inherited disorders are associated with faulty operation of the electron transport pathway. ATP production is diminished in such cases. These disorders are known as mitochondrial myopathies, and they are associated with the absence of specific polypeptide chains found in complexes I, III, or IV. In many cases, the problem may be traced to specific lesions in mitochondrial DNA, which codes for at least 13 polypeptide chains found in these complexes. Myopathies are tissue specific some affect the heart, others the skeletal muscle. Many are accompanied by lactic acidosis, because the inability to reduce NADH normally results in its accumulation and the channeling of pyruvate toward lactic acid production. In complex I disorders, the oxidation of FADH2 is not impeded. In complex III lesions, neither NADH nor FADH2 can be oxidized. However, use has been made by B. Chance and colleagues of menadione (Chapter 6) and ascorbic acid in such cases. The former can oxidize UQH2, whereas ascorbate can oxidize menadione and reduce cytochrome c. Marked clinical improvement in affected patients follows such treatment. [Pg.450]

This translates to a AEq of 0.81-0.10 = 0.72 V and a AGq of -33,000 cal. This is theoretically available for electrons entering at the UQ level, as from FADH2. With 48% efficiency, this leaves about 16,000 cal for ATP biosynthesis, corresponding to about two ATP molecules per electron pair. [Pg.452]

It is also possible to approximate the number of protons necessary to export to generate 3 ATP molecules per electron pair. Assuming that the pH gradient across the inner mitochondrial membrane is about 1, that is, (H+]out/[H+]in = 10, and assuming that the transmembrane potential is 0.18 V (negative inside), we can use Equation (9.7) to calculate the AGq that becomes available per mol H+ extruded by mitochondria  [Pg.452]

If a total of about 52,000 cal becomes available by the passage of 2 electrons to 02 and for each mol protons, 5500 cal is made available, then the total number of protons that must be extruded is 52,000/5500 = 9.5. This figure corresponds rather well with the experimentally determined figure of 8-10 protons cited earlier. [Pg.452]

ADP phosphorylation is tightly coupled to electron transport. Shutting down one shuts down the other. It is well known that if ADP phosphorylation is inhibited by such compounds as oligomycin, electron transport also ceases. If the proton gradient is broken by a proton ionophore, however, such as 2,4-dinitrophenol, electron transport resumes at a rapid pace and no phosphorylation takes place. Such proton ionophores are also termed uncouplers of electron transport and ADP phosphorylation. Under normal conditions, the factors limiting ATP production are the pH gradient across the inner mitochondrial membrane and the cellular ADP/ATP ratio. An increase in the proton gradient shuts down phosphorylation and electron transport, whereas an increase in the ADP/ATP ratio stimulates both. Stimulation of oxidative phosphorylation by increases in cellular ADP concentration is termed respiratory control. [Pg.453]


Compounds having the 16,17 ketal, eg, budesonide, amcinonide, fluocinonide, halcinonide, triamcinolone acetonide, and flurandrenohde, also undergo metabohsm by routes that parahel that of cortisol metabohsm. Unsymmetrical acetals such as budesonide are also metabolized by routes not available to the more metabohcahy stable symmetrical 16a,17a-isopropyhdiene-dioxysubstituted compounds (desonide, flunisohde, and triamcinolone acetonide). Isozymes within the cytochrome P450 3A subfamily are thought to catalyze the metabohsm of budesonide, resulting in formation of 16a-hydroxyprednisolone and 6P-hydroxybudesonide (19,20) (Fig. 3) in addition to the more common metabohc steps (oxidation via reduction of A, etc). [Pg.97]

Electron Transport Between Photosystem I and Photosystem II Inhibitors. The interaction between PSI and PSII reaction centers (Fig. 1) depends on the thermodynamically favored transfer of electrons from low redox potential carriers to carriers of higher redox potential. This process serves to communicate reducing equivalents between the two photosystem complexes. Photosynthetic and respiratory membranes of both eukaryotes and prokaryotes contain stmctures that serve to oxidize low potential quinols while reducing high potential metaHoproteins (40). In plant thylakoid membranes, this complex is usually referred to as the cytochrome b /f complex, or plastoquinolplastocyanin oxidoreductase, which oxidizes plastoquinol reduced in PSII and reduces plastocyanin oxidized in PSI (25,41). Some diphenyl ethers, eg, 2,4-dinitrophenyl 2 -iodo-3 -methyl-4 -nitro-6 -isopropylphenyl ether [69311-70-2] (DNP-INT), and the quinone analogues,... [Pg.40]

Other compounds of this general class which have been found to have antiestrogenic properties include the cytochrome P-450 inhibitor, SKF 525A P02-33-0](Sl) (24) JV, JV-diethyl-2-[(4-phenylmethyl)phenoxy]ethanamine [98774-23-3] (DPPE)(58) (42) /-Butylphenoxyethyl diethylamine [57586-10-4] (BPEA)(59) (43) and cyclofenil [110042-18-7] (60, R = C H ) (24) analogues. [Pg.240]

Organosulfur Compounds. These compounds, Hsted in Table 8, are used in a variety of appHcations, including cooling water, paint, and metalworking. Methylenebisthiocyanate hydroly2es rapidly at a pH above 8 to cyanate ion which complexes with ferric iron to poison the cytochrome systems (36). [Pg.98]

The abihty of iron to exist in two stable oxidation states, ie, the ferrous, Fe ", and ferric, Fe ", states in aqueous solutions, is important to the role of iron as a biocatalyst (79) (see Iron compounds). Although the cytochromes of the electron-transport chain contain porphyrins like hemoglobin and myoglobin, the iron ions therein are involved in oxidation—reduction reactions (78). Catalase is a tetramer containing four atoms of iron peroxidase is a monomer having one atom of iron. The iron in these enzymes also undergoes oxidation and reduction (80). [Pg.384]

The hver microsomal dmg-metabolizing system is of particular importance. This oxidative pathway is mediated by isozymes of the cytochrome family (Fig. 4). At least ten enzyme families exist to accommodate the abiUty of humans to handle many foreign molecules (21). [Pg.270]

L-Tyrosine metabohsm and catecholamine biosynthesis occur largely in the brain, central nervous tissue, and endocrine system, which have large pools of L-ascorbic acid (128). Catecholamine, a neurotransmitter, is the precursor in the formation of dopamine, which is converted to noradrenaline and adrenaline. The precise role of ascorbic acid has not been completely understood. Ascorbic acid has important biochemical functions with various hydroxylase enzymes in steroid, dmg, andhpid metabohsm. The cytochrome P-450 oxidase catalyzes the conversion of cholesterol to bUe acids and the detoxification process of aromatic dmgs and other xenobiotics, eg, carcinogens, poUutants, and pesticides, in the body (129). The effects of L-ascorbic acid on histamine metabohsm related to scurvy and anaphylactic shock have been investigated (130). Another ceUular reaction involving ascorbic acid is the conversion of folate to tetrahydrofolate. Ascorbic acid has many biochemical functions which affect the immune system of the body (131). [Pg.21]

Clotrimazole and other azole derivatives have a different mode of action than the polyenes, eg, amphotericin B. The latter biad to the ergosterol present ia the membranes of yeasts and fungi, but azole derivatives inhibit the cytochrome P-450 dependent biosynthesis of ergosterol (8—11). This inhibition not only results in a reduction of ergosterol, but also in an accumulation of C-14 methyl sterols. They disturb membrane permeabiUty, inhibit cell rephcation, and are basically responsible, in combination with the reduction of ergosterol levels, for the antifungal action. [Pg.253]

Miconazole. Miconazole nitrate [22832-87-7] (Fig. 2), the 1-phenethyl-imidazole derivative first described in 1969, interferes at low doses with the cytochrome P-450 dependent ergosterol biosynthesis in yeasts and fungi. The result is accumulation of C-14 methylated sterols on the one hand and reduction of the ergosterol levels in the membranes on the other hand (12). Analogous to clotrimazole, this leads to a disturbance in the membranes it results in inhibition of ceU repHcation, mycelium development (in C. albicans) and finally, ceU death. High concentrations of miconazole, which may be achieved with topical use, disturb the orientation of phosphoHpids in the membranes, which produces leaks (13). [Pg.253]

Like the a2ole derivatives, it inhibits the biosynthesis of ergosterol. However, naftifine [65472-88-0] does not inhibit the cytochrome P-450 dependent C-14-demethylase, but the epoxidation of squalene. Squalene epoxidase cataly2es the first step in the conversion of squalene via lanosterol to ergosterol in yeasts and fungi or to cholesterol in mammalian cells. The squalene epoxidase in C. albicans is 150 times more sensitive to naftifine, C2 H2 N, than the en2yme in rat fiver (15). Naftifine is available as a 1% cream. [Pg.254]

Plasma levels of 3—5 p.g/mL are obtained two hours after adraiinistration of 200 mg ketoconazole. No accumulation in the bloodstream was noted after a 30-wk treatment with this dose. The half-life is approximately eight hours. When ketoconazole is taken with meals, higher plasma levels are obtained. Distribution studies using radioactive ketoconazole in rats show radioactivity mainly in the Hver and the connective tissue. Radioactivity is also present in the subcutaneous tissue and the sebaceous glands. After one dose of 200 mg in humans, ketoconazole is found in urine, saUva, sebum, and cenimen. Like miconazole, the mode of action is based on inhibition of the cytochrome P-450 dependent biosynthesis of ergosterol. This results in disturbed membrane permeabiUty and membrane-bound enzymes (8,10,23,25). [Pg.256]

MR Gunner, B Homg. Electrostatic control of midpoint potentials m the cytochrome subunit of the Rhodopseudomonas viridis reaction center. Proc Natl Acad Sci USA 88 9151-9155, 1991. [Pg.413]

RL Cutler, AM Davies, S Creighton, A Warshel, GR Moore, M Smith, AG Mauk. Role of arginine-38 in regulation of the cytochrome c oxidation-reduction equilibrium. Biochemistry 28 3188-3197, 1989. [Pg.414]

The L and the M subunits are firmly anchored in the membrane, each by five hydrophobic transmembrane a helices (yellow and red, respectively, in Figure 12.14). The structures of the L and M subunits are quite similar as expected from their sequence similarity they differ only in some of the loop regions. These loops, which connect the membrane-spanning helices, form rather flat hydrophilic regions on either side of the membrane to provide interaction areas with the H subunit (green in Figure 12.14) on the cytoplasmic side and with the cytochrome (blue in Figure 12.14) on the periplasmic side. The H subunit, in addition, has one transmembrane a helix at the car-boxy terminus of its polypeptide chain. The carboxy end of this chain is therefore on the same side of the membrane as the cytochrome. In total, eleven transmembrane a helices attach the L, M, and H subunits to the membrane. [Pg.236]

No region of the cytochrome penetrates the membrane nevertheless, the cytochrome subunit is an integral part of this reaction center complex, held through protein-protein interactions similar to those in soluble globular multisubunit proteins. The protein-protein interactions that bind cytochrome in the reaction center of Rhodopseudomonas viridis are strong enough to survive the purification procedure. However, when the reaction center of Rhodohacter sphaeroides is isolated, the cytochrome is lost, even though the structures of the L, M, and H subunits are very similar in the two species. [Pg.236]

Figure 12.14 The three-dimensional structure of a photosynthetic reaction center of a purple bacterium was the first high-resolution structure to be obtained from a membrane-bound protein. The molecule contains four subunits L, M, H, and a cytochrome. Subunits L and M bind the photosynthetic pigments, and the cytochrome binds four heme groups. The L (yellow) and the M (red) subunits each have five transmembrane a helices A-E. The H subunit (green) has one such transmembrane helix, AH, and the cytochrome (blue) has none. Approximate membrane boundaries are shown. The photosynthetic pigments and the heme groups appear in black. (Adapted from L. Stryer, Biochemistry, 3rd ed. New York ... Figure 12.14 The three-dimensional structure of a photosynthetic reaction center of a purple bacterium was the first high-resolution structure to be obtained from a membrane-bound protein. The molecule contains four subunits L, M, H, and a cytochrome. Subunits L and M bind the photosynthetic pigments, and the cytochrome binds four heme groups. The L (yellow) and the M (red) subunits each have five transmembrane a helices A-E. The H subunit (green) has one such transmembrane helix, AH, and the cytochrome (blue) has none. Approximate membrane boundaries are shown. The photosynthetic pigments and the heme groups appear in black. (Adapted from L. Stryer, Biochemistry, 3rd ed. New York ...
While this electron flow takes place, the cytochrome on the periplasmic side donates an electron to the special pair and thereby neutralizes it. Then the entire process occurs again another photon strikes the special pair, and another electron travels the same route from the special pair on the periplasmic side of the membrane to the quinone, Qb, on the cytosolic side, which now carries two extra electrons. This quinone is then released from the reaction center to participate in later stages of photosynthesis. The special pair is again neutralized by an electron from the cytochrome. [Pg.240]

Furthermore, as shown in Figure 5.28, the number of amino acid differences between two cytochrome c sequences is proportional to the phylogenetic difference between the species from which they are derived. The cytochrome c in humans and in chimpanzees is identical human and another mammalian (sheep) cytochrome c differ at 10 residues. The human cytochrome c sequence has 14 variant residues from a reptile sequence (rattlesnake), 18 from a fish (carp), 29 from a mollusc (snail), 31 from an insect (moth), and more than 40 from yeast or higher plants (cauliflower). [Pg.144]

In the third complex of the electron transport chain, reduced coenzyme Q (UQHg) passes its electrons to cytochrome c via a unique redox pathway known as the Q cycle. UQ cytochrome c reductase (UQ-cyt c reductase), as this complex is known, involves three different cytochromes and an Fe-S protein. In the cytochromes of these and similar complexes, the iron atom at the center of the porphyrin ring cycles between the reduced Fe (ferrous) and oxidized Fe (ferric) states. [Pg.685]

FIGURE 21.11 The structure of UQ-cyt c reductase, also known as the cytochrome hci complex. The alpha helices of cytochrome b (pale green) define the transmembrane domain of the protein. The bottom of the structure as shown extends approximately 75 A into the mitochondrial matrix, and die top of the structure as shown extends about 38 A into the intermembrane space. (Photograph kindly provided by Di Xia and Johann Deismhofer [From Xia, D., Yn, C.-A., Kim, H., Xia,J-Z., Kachnrin, A. M., Zhang, L., Yn,... [Pg.686]

L., and Deiscnhofer, J, 1997. The crystal strnctnrc of the cytochrome bci complex from bovine heart mitochondria. Science 277 60-66.])... [Pg.686]

The structure of the UQ-cyt c reductase, also known as the cytochrome bc complex, has been determined by Johann Deisenhofer and his colleagues. (Deisenhofer was a co-recipient of the Nobel Prize in Chemistry for his work on the structure of a photosynthetic reaction center [see Chapter 22]). The complex is a dimer, with each monomer consisting of 11 protein subunits and 2165 amino acid residues (monomer mass, 248 kD). The dimeric structure is pear-shaped and consists of a large domain that extends 75 A into the mito-... [Pg.686]

Why has nature chosen this rather convoluted path for electrons in Complex 111 First of all. Complex 111 takes up two protons on the matrix side of the inner membrane and releases four protons on the cytoplasmic side for each pair of electrons that passes through the Q cycle. The apparent imbalance of two protons in ior four protons out is offset by proton translocations in Complex rV, the cytochrome oxidase complex. The other significant feature of this mechanism is that it offers a convenient way for a two-electron carrier, UQHg, to interact with the bj and bfj hemes, the Rieske protein Fe-S cluster, and cytochrome C, all of which are one-electron carriers. [Pg.688]

Cytochrome c oxidase contains two heme centers (cytochromes a and %) as well as two copper atoms (Figure 21.17). The copper sites, Cu and Cug, are associated with cytochromes a and respectively. The copper sites participate in electron transfer by cycling between the reduced (cuprous) Cu state and the oxidized (cupric) Cu state. (Remember, the cytochromes and copper sites are one-electron transfer agents.) Reduction of one oxygen molecule requires passage of four electrons through these carriers—one at a time (Figure... [Pg.690]

Trumpower, B. L., 1990. The protonmotive Q cycle—energy tran.sduction by coupling of proton tran.slocation to electron tran.sfer by the cytochrome bei corap[ x. Journal of Biological Chemistry 265 11409-11412. [Pg.708]

Electron Transfer Within the Cytochrome fig/Cytochrome/ Complex... [Pg.722]


See other pages where The Cytochromes is mentioned: [Pg.124]    [Pg.108]    [Pg.40]    [Pg.40]    [Pg.47]    [Pg.271]    [Pg.383]    [Pg.109]    [Pg.109]    [Pg.257]    [Pg.62]    [Pg.526]    [Pg.526]    [Pg.405]    [Pg.236]    [Pg.240]    [Pg.144]    [Pg.688]    [Pg.699]    [Pg.708]    [Pg.719]    [Pg.719]    [Pg.719]    [Pg.721]    [Pg.722]   


SEARCH



Electron transfer in the Cytochrome

Genes for components of the cytochrome b-f complex

Mechanism of the cytochrome

Polypeptides of the cytochrome b-f complex

Terminal Oxidation The Cytochrome Chain

The Cytochrome cdi from Pseudomonas aeruginosa

The Diversity and Importance of Microbial Cytochromes

The Structure of Cytochrome

The cytochrome bc complex

The main cytochrome

The microsomal cytochrome

The ubiquinol-cytochrome c oxidoreductase of photosynthetic bacteria

Translation Site of the Cytochrome Oxidase Subunits

© 2024 chempedia.info