Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Catalytic Cycle

It is then necessary to bring the reactant molecules to the active centre by a process of mass transport which can sometimes be rate limiting (Section 5.2.1). Having been chemisorbed they must then react at the reacting centre, and how they do this will occupy us for much of the rest of the book. The product molecules remain on the surface or may be ejected from the surface as it is formed in the former case it its desorption may be the slow step, and if it does not desorb quickly its further reaction may lead to undesired products. Speedy removal of the product from the neighbourhood of the surface by another mass transport step is often important if it is an intermediate product that is wanted. Conversion of reactants or products into strongly held residues, or adventitious poisons in the feedstock, can block the active centre and lead to deactivation. In their absence the reaction should continue indefinitely. [Pg.214]

Example of a catalytic cycle with catalyst precursors and both the reversible and irreversible formation of inactive species. [Pg.544]


When exclusively considering Lewis-add catalysis, the literature on ligand effects can be divided into studies describing quantitatively the effect of ligands on rates and equilibria of the individual steps in the catalytic cycle on one hand, and studies focused on the enantioselectivity of the reaction on the other. Interestingly, in the majority of the former investigations, aqueous media are employed. [Pg.75]

The most useful reaction of Pd is a catalytic reaction, which can be carried out with only a small amount of expensive Pd compounds. The catalytic cycle for the Pd(0) catalyst, which is understood by the combination of the aforementioned reactions, is possible by reductive elimination to generate Pd(0), The Pd(0) thus generated undergoes oxidative addition and starts another catalytic cycle. A Pd(0) catalytic species is also regenerated by /3-elimination to form Pd—H which is followed by the insertion of the alkene to start the new catalytic cycle. These relationships can be expressed as shown. [Pg.9]

All these intermediate complexes undergo various transformations such as insertion, transmetallation, and trapping with nucleophiles, and Pd(0) is regenerated at the end in every case. The regenerated Pd(0) starts the catalytic cycle again, making the whole process catalytic. These reactions catalyzed by Pd(0) are treated in Chapter 4. [Pg.16]

N—Fe(IV)Por complexes. Oxo iron(IV) porphyrin cation radical complexes, [O—Fe(IV)Por ], are important intermediates in oxygen atom transfer reactions. Compound I of the enzymes catalase and peroxidase have this formulation, as does the active intermediate in the catalytic cycle of cytochrome P Q. Similar intermediates are invoked in the extensively investigated hydroxylations and epoxidations of hydrocarbon substrates cataly2ed by iron porphyrins in the presence of such oxidizing agents as iodosylbenzene, NaOCl, peroxides, and air. [Pg.442]

Donation of a proton to the reactant often forms a carbenium ion or an oxonium ion, which then reacts ia the catalytic cycle. For example, a catalytic cycle suggested for the conversion of phenol and acetone iato bisphenol A, which is an important monomer used to manufacture epoxy resias and polycarbonates, ia an aqueous mineral acid solution is shown ia Figure 1 (10). [Pg.162]

The kinetics of reactions cataly2ed by very strong acids are often compHcated. The exact nature of the proton donor species is often not known, and typically the rate of the catalytic reaction does not have a simple dependence on the total concentration of the acid. However, sometimes there is a simple dependence of the catalytic reaction rate on some empirical measure of the acid strength of the solution, such as the Hammett acidity function Hq, which is a measure of the tendency of the solution to donate a proton to a neutral base. Sometimes the rate is proportional to (—log/ig)- Such a dependence may be expected when the slow step in the catalytic cycle is the donation of a proton by the solution to a neutral reactant, ie, base but it is not easy to predict when such a dependence may be found. [Pg.163]

The Wilkinson hydrogenation cycle shown in Figure 3 (16) was worked out in experiments that included isolation and identification of individual rhodium complexes, measurements of equiUbria of individual steps, deterrnination of rates of individual steps under conditions of stoichiometric reaction with certain reactants missing so that the catalytic cycle could not occur, and deterrnination of rates of the overall catalytic reaction. The cycle demonstrates some generally important points about catalysis the predominant species present in the reacting solution and the only ones that are easily observable by spectroscopic methods, eg, RhCl[P(CgH 2]3> 6 5)312 (olefin), and RhCl2[P(CgH )2]4, are outside the cycle, possibly in virtual equiUbrium with... [Pg.164]

The catalytic cycle (Fig. 5) (20) is well estabUshed, although the details of the conversion of the intermediate CH COI and methanol into the product are not well understood the mechanism is not shown for this part of the cycle, but it probably involves rhodium in a catalytic role. The CH I works as a cocatalyst or promoter because it undergoes an oxidative addition with [Rh(CO)2l2]% and the resulting product has the CO ligand bonded cis to the CH ligand these two ligands are then poised for an insertion reaction. [Pg.166]

Fig. 18. Schematic representation of the catalytic cycle for ammoxidation of propylene and related reactions. and M2 represent the two metals in a... Fig. 18. Schematic representation of the catalytic cycle for ammoxidation of propylene and related reactions. and M2 represent the two metals in a...
In terms of cost, the effectiveness of the catalytic cycle in the ring closure makes this process economical in palladium. The first three steps in the reaction sequence -- ring opening of an epoxide by a Grignard reagent, converison of an alcohol to an amine with inversion, and sulfonamide formation from the amine — are all standard synthetic processes. [Pg.55]

Many enzymes require metal ions for maximal activity. If the enzyme binds the metal very tightly or requires the metal ion to maintain its stable, native state, it is referred to as a metalloenzyme. Enzymes that bind metal ions more weakly, perhaps only during the catalytic cycle, are referred to as metal activated. One role for metals in metal-activated enzymes and metalloenzymes is to act as electrophilic catalysts, stabilizing the increased electron density or negative charge that can develop during reactions. Among the enzymes that function in this... [Pg.511]

Hydrido complexes of all three elements, and covering a range of formal oxidation states, are important because of their roles in homogeneous catalysis either as the catalysts themselves or as intermediates in the catalytic cycles. [Pg.1117]

The most widely accepted mechanism of reaction is shown in the catalytic cycle (Scheme 1.4.3). The overall reaction can be broken down into three elementary steps the oxidation step (Step A), the first C-O bond forming step (Step B), and the second C-O bond forming step (Step C). Step A is the rate-determining step kinetic studies show that the reaction is first order in both catalyst and oxidant, and zero order in olefin. The rate of reaction is directly affected by choice of oxidant, catalyst loadings, and the presence of additives such as A -oxides. Under certain conditions, A -oxides have been shown to increase the rate of reaction by acting as phase transfer catalysts. ... [Pg.30]

The synthetic utility of the alkene metathesis reaction may in some cases be limited because of the formation of a mixture of products. The steps of the catalytic cycle are equilibrium processes, with the yields being determined by the thermodynamic equilibrium. The metathesis process generally tends to give complex mixtures of products. For example, pent-2-ene 8 disproportionates to give, at equilibrium, a statistical mixture of but-2-enes, pent-2-enes and hex-3-enes ... [Pg.12]

A catalytic amount of a reactive palladium(0)-complex 3 (i.e. PdLa in the catalytic cycle scheme shown below) is likely to be formed when the palladium(ll) acetate 2 oxidizes a small amount of the alkene ... [Pg.155]

The catalytic cycle of the Heck reaction can be formulated with four steps as follows ... [Pg.155]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

Many types of functional groups are tolerated in a Suzuki reaction, and the yields are often good to very good. The presence of a base, e.g. sodium hydroxide or sodium/potassium carbonate, is essential for this reaction. The base is likely to be involved in more than one step of the catalytic cycle, at least in the transmetal-lation step. Proper choice of the base is important in order to obtain good results." In contrast to the Heck reaction and the Stille reaction, the Suzuki reaction does not work under neutral conditions. [Pg.274]

From intermediate C, the next step in the catalytic cycle involves a simple bond rotation to give D. This event is essential because it establishes the necessary syn relationship between a -hydrogen and the palladium atom. With a / -hydrogcn and the transition metal... [Pg.567]

Although analogous to the direct coupling reaction, the catalytic cycle for the carbonylative coupling reaction is distinguished by an insertion of carbon monoxide into the C-Pd bond of complex A (see A—>B, Scheme 31). The transmetalation step-then gives trans complex C which isomerizes to the cis complex D. The ketone product E is revealed after reductive elimination. [Pg.593]

A plausible mechanism accounting for the catalytic role of nickel(n) chloride has been advanced (see Scheme 4).10 The process may be initiated by reduction of nickel(n) chloride to nickel(o) by two equivalents of chromium(n) chloride, followed by oxidative addition of the vinyl iodide (or related substrate) to give a vinyl nickel(n) reagent. The latter species may then undergo transmetala-tion with a chromium(m) salt leading to a vinyl chromium(m) reagent which then reacts with the aldehyde. The nickel(n) produced in the oxidative addition step reenters the catalytic cycle. [Pg.717]

The first attempt at a catalytic asymmetric sulfur ylide epoxidation was by Fur-ukawa s group [5]. The catalytic cycle was formed by initial alkylation of a sulfide (14), followed by deprotonation of the sulfonium salt 15 to form an ylide 16 and... [Pg.5]

Scheme 10.4 The catalytic cycle of cytochrome P450. Only one possible valence structure of the oxoferrous species IV has been depicted for clarity. See text for details. Scheme 10.4 The catalytic cycle of cytochrome P450. Only one possible valence structure of the oxoferrous species IV has been depicted for clarity. See text for details.
When a mixture of aldehydes and (Z)-l-ethylthio-l-trimethylsilyloxy-l-propene is added slowly to a solution of tin(Il) triflate and 10-20 mol% of the chiral diamine 4 in acetonitrile, /1-silyloxy thioesters 5 are obtained in high simple diastereoselection and induced stereoselectivity. Thus, the chiral auxiliary reagent can be used in substoichiometric amount. A rationale is given by the catalytic cycle shown below, whereby the chiral tin(II) catalyst 6 is liberated once the complex 7 has formed33. [Pg.581]

RhCl(PPhi)i as a homogenous hydrogenation catalyst [44, 45, 52]. The mechanism of this reaction has been the source of controversy for many years. One interpretation of the catalytic cycle is shown in Figure 2.15 this concentrates on a route where hydride coordination occurs first, rather than alkene coordination, and in which dimeric species are unimportant. (Recent NMR study indicates the presence of binuclear dihydrides in low amount in the catalyst system [47].)... [Pg.95]

Adenylyl Cyclases. Figure 6 Adenylyl cyclase catalytic cycle. Points during the catalytic cycle of adenylyl cyclases at which inhibition by competitive and noncompetitive nucleotides occur E represents the catalytic transition state. [Pg.33]

The catalytic cycle of the Na+/K+-ATPase can be described by juxtaposition of distinct reaction sequences that are associated with two different conformational states termed Ei and E2 [1]. In the first step, the Ei conformation is that the enzyme binds Na+ and ATP with very high affinity (KD values of 0.19-0.26 mM and 0.1-0.2 pM, respectively) (Fig. 1A, Step 1). After autophosphorylation by ATP at the aspartic acid within the sequence DKTGS/T the enzyme occludes the 3 Na+ ions (Ei-P(3Na+) Fig. la, Step 2) and releases them into the extracellular space after attaining the E2-P 3Na+ conformation characterized by low affinity for Na+ (Kq5 = 14 mM) (Fig. la, Step 3). The following E2-P conformation binds 2 K+ ions with high affinity (KD approx. 0.1 mM Fig. la, Step 4). The binding of K+ to the enzyme induces a spontaneous dephosphorylation of the E2-P conformation and leads to the occlusion of 2 K+ ions (E2(2K+) Fig. la, Step 5). Intracellular ATP increases the extent of the release of K+ from the E2(2K+) conformation (Fig. la, Step 6) and thereby also the return of the E2(2K+) conformation to the EiATPNa conformation. The affinity ofthe E2(2K+) conformation for ATP, with a K0.5 value of 0.45 mM, is very low. [Pg.813]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

As stated above, olefin metathesis is in principle reversible, because all steps of the catalytic cycle are reversible. In preparatively useful transformations, the equilibrium is shifted to one side. This is most commonly achieved by removal of a volatile alkene, mostly ethene, from the reaction mixture. An obvious and well-established way to classify olefin metathesis reactions is depicted in Scheme 2. Depending on the structure of the olefin, metathesis may occur either inter- or intramolecularly. Intermolecular metathesis of two alkenes is called cross metathesis (CM) (if the two alkenes are identical, as in the case of the Phillips triolefin process, the term self metathesis is sometimes used). The intermolecular metathesis of an a,co-diene leads to polymeric structures and ethene this mode of metathesis is called acyclic diene metathesis (ADMET). Intramolecular metathesis of these substrates gives cycloalkenes and ethene (ring-closing metathesis, RCM) the reverse reaction is the cleavage of a cyclo-... [Pg.225]


See other pages where The Catalytic Cycle is mentioned: [Pg.173]    [Pg.20]    [Pg.231]    [Pg.164]    [Pg.302]    [Pg.10]    [Pg.1171]    [Pg.23]    [Pg.236]    [Pg.269]    [Pg.196]    [Pg.27]    [Pg.559]    [Pg.1168]    [Pg.352]    [Pg.567]    [Pg.580]    [Pg.592]    [Pg.680]    [Pg.681]    [Pg.178]    [Pg.815]   


SEARCH



Brookharts iron catalyst showing disruption of the catalytic cycle by ethanol

Catalytic Cycle and the Mechanism of Propylene Epoxidation

Catalytic Cycle for the First Stage

Catalytic Cycle for the Heck Reaction

Catalytic Cycle for the Second Stage

Catalytic cycle

Catalytic cycle for the dehydrogenation

Catalytic cycle the OXO process

Fluorine Replaces a Hydrogen Involved in the Catalytic Cycle

Reaction Kinetics and the Catalytic Cycle

Side Reactions in the Catalytic Cycle

Termination of the Metal-promoted or catalysed Reactions and a Catalytic Cycle

The Catalytic Cycle of

The Catalytic Cycle of Horseradish Peroxidase

The catalytic reaction cycles

What Makes the Catalytic Cycle Tick A Summary

© 2024 chempedia.info