Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The bias potential

As indicated above, when the junction is biased by a finite potential Eq. (17.25) applies, however the transmission function T depends on the bridge s electronic structure which in turn depends on the bias h. To make this explicit we rewrite Eq. (17.25) in the form [Pg.625]

The actual way by which an imposed potential bias distributes itself on the molecular bridge depends on the molecular response to this bias, and constitutes part of the electronic structure problem. Starting from the imbiased junction in Fig. 17.6(a) (shown in the local representation of a tight binding model similar to [Pg.625]


The second procedure is different from the previous one in several aspects. First, the metallic substrate employed is Au, which does not show a remarkable dissolution under the experimental conditions chosen, so that no faradaic processes are involved at either the substrate or the tip. Second, the tip is polarized negatively with respect to the surface. Third, the potential bias between the tip and the substrate must be extremely small (e.g., -2 mV) otherwise, no nanocavity formation is observed. Fourth, the potential of the substrate must be in a region where reconstruction of the Au(lll) surface occurs. Thus, when the bias potential is stepped from a significant positive value (typically, 200 mV) to a small negative value and kept there for a period of several seconds, individual pits of about 40 nm result, with a depth of two to four atomic layers. According to the authors, this nanostructuring procedure is initiated by an important electronic (but not mechanical) contact between tip and substrate. As a consequence of this interaction, and stimulated by an enhanced local reconstruction of the surface, some Au atoms are mobilized from the Au surface to the tip, where they are adhered. When the tip is pulled out of the surface, a pit with a mound beside it is left on the surface. The formation of the connecting neck between the tip and surface is similar to the TILMD technique described above but with a different hnal result a hole instead of a cluster on the surface (Chi et al., 2000). [Pg.688]

The first STM experiments were performed under UHV conditions, and so the bias potential was simply applied as a difference across the tip and sample. However, introducing an electrolyte above the sample brought with it some particular problems. It is no longer sufficient simply to apply a bias voltage equal to the potential difference between tip and sample as this means that the potentials of the tip and sample are undefined with respect to any fixed reference, a wholly undesirable situation. Consequently, modern electrochemical STM systems operate under bipotentiostatic control with the tip and sample controlled and monitored independently with respect to the reference electrode. The bias potential is then still given by (Fs — FT), but VT and Fs are now potentials with respect to the reference electrode. [Pg.79]

In order to ameliorate the sharply sloping background obtained in an STS spectrum, the data are often presented as di,/dFh vs. Vb, i.e. the data are either numerically differentiated after collection or Vb has a small modulation applied on top of the ramp, and the differential di,/d Vb is measured directly as a function of Vb. The ripples due to the presence of LDOS are now manifest as clear peaks in the differential plot. dt,/dFb vs. Vb curves are often referred to as conductance plots and directly reflect the spatial distribution of the surface electronic states they may be used to identify the energy of a state and its associated width. If V is the bias potential at which the onset of a ripple in the ijV plot occurs, or the onset of the corresponding peak in the dt/dF plot, then the energy of the localised surface state is e0 x F. Some caution must be exercised in interpreting the differential plots, however, since... [Pg.83]

In addition, a bipotentiostat is used to control the tip potential with respect to the surface and independent of control of the surface potential with respect to the reference electrode. The tip potential E, is given by E, = Eg + E , where Eg is the bias potential that generates the tnnneling current between tip and surface, and E (a vital variable not typical of other applications of STM and AFM) is the potential of the surface relative to the reference electrode. [Pg.270]

This result is very appealing since the relative rates of escapes from A to other states are invariant under the addition of the bias potential, i.e.,... [Pg.84]

Thus, the state-to-state dynamics on the biased potential is equivalent to that on the original potential as long as the time is renormalized to account for the uniform relative increase of all the rates introduced by the biased potential. This renormalization is in practice obtained by multiplying the MD timestep AImd by the inverse Boltzmann factor for the bias potential, so that n MD timesteps on the biased potential are equivalent to an elapsed time of... [Pg.84]

Indeed, as discussed above, the applicability of hyperdynamics is often hampered by the difficulty in building bias potentials that satisfy all the formal requirements — namely that (i) the bias potential should vanish at any dividing surface between different states and (ii) the kinetics on the biased potential obeys TST — while providing substantial acceleration of the dynamics. Both requirements are very challenging to meet in practice. Indeed, condition... [Pg.91]

V°rev = 1.229V is the standard state reversible potential for the water splitting reaction and Vaoc is the anode potential at open circuit conditions. Term Vmeas-Vaoc arises from the fact that Voc represents the contribution of light towards the minimum voltage needed for water splitting potential (1.229V) and that the potential of the anode measured with respect to the reference electrode Vmeas has contributions from the open circuit potential and the bias potential applied by the potentiostat (i.e. Vmeas= Vapp+Vaoc). The term Vmeas-Vaoc makes relation (3.6.16) independent of the electrolyte pH and the type of reference electrode used. Thus the use of V°rev in relation (3.6.16) instead of VV or V°hz as in the case of relation (3.6.15) is justified. [Pg.171]

Generally, depending on the bias potential, the EIS leads to RC equivalent circuit loops representing both the space charge and the interface impedance components. The complete set of imaginary versus real impedance data leads to the construction of a semicircle that can be... [Pg.312]

Fig. 4 Reciprocal of the depletion layer resistance of p-type Si in the dark as a function of the bias potential applied to the Si substrate. Fig. 4 Reciprocal of the depletion layer resistance of p-type Si in the dark as a function of the bias potential applied to the Si substrate.
FIGURE 1.21 An example of a complex-plane impedance plot (Nyquist plane) for an electrochemical system under mixed kinetic/diffusion control, with the mass transfer and kinetics (charge transfer) control regions, for a finite thickness 8N of the diffusion layer. Assumption was made that Kf Kh at the bias potential of the measurement, and D0I = Dmd = D, leading to RB = RCT (krb8N/ >). [Pg.28]

Figure 14 Comparison of photocatalytic degradation rates of A07 with Sn02, Ti02, and SNO/HOj particulate films coated on OTE electrodes. In each set of experiments, the total weight of the semiconductor catalyst was kept constant at the indicated value. The bias potential was 0.83 V vs. SCE and the electrolyte was 42 ppm A07 in water (pH 6). (From Ref. 265.)... Figure 14 Comparison of photocatalytic degradation rates of A07 with Sn02, Ti02, and SNO/HOj particulate films coated on OTE electrodes. In each set of experiments, the total weight of the semiconductor catalyst was kept constant at the indicated value. The bias potential was 0.83 V vs. SCE and the electrolyte was 42 ppm A07 in water (pH 6). (From Ref. 265.)...
The observations illustrate that inelastic and thermally activated tunnel channels may apply to metalloproteins and large transition metal complexes. The channels hold perspectives for mapping protein structure, adsorption and electronic function at metallic surfaces. One observation regarding the latter is, for example that the two electrode potentials can be varied in parallel, relative to a common reference electrode potential, at fixed bias potential. This is equivalent to taking the local redox level up or down relative to the Fermi levels (Fig. 5.6a). If both electrode potentials are shifted negatively, and the redox level is empty (oxidized), then the current at first rises. It reaches a maximum, convoluted with the bias potential between the two Fermi levels, and then drops as further potential variation takes the redox level below the Fermi level of the positively biased electrode. The relation between such current-voltage patterns and other three-level processes, such as molecular resonance Raman scattering [76], has been discussed [38]. [Pg.149]

The photocatalytic activity of Ti02 toward a specific reaction depends on both, its physicochemical properties such as primary particle size, degree of aggregation, surface area, crystalline structures, etc. and external conditions such as irradiation intensity, pH of the aqueous system, the presence/absence of elec-tron/hole scavengers, and the bias potential if applied for Ti02 film photoelectrodes. These factors are often interactively affecting the overall photocatalytic activity (Hoffmann et al. 1995). [Pg.389]

The design of the cells, the preparations of the silver -f- silver bromide electrodes (of the thermal type), and the hydrogen electrodes, have been described elsewhere (21,22). The bias potential of the silver-silver bromide electrodes was always within 0.05 mV. [Pg.281]

Figure 19. Gartner plots (see Eq. 25) for the p-GaP-0.5 M H2SO4 interface. The numbers on the plots refer to the excitation wavelength is the flat-band potential and E is the bias potential. (Note that this notation is different from that employed in the text.) (Reproduced with permission from Ref. [211].)... Figure 19. Gartner plots (see Eq. 25) for the p-GaP-0.5 M H2SO4 interface. The numbers on the plots refer to the excitation wavelength is the flat-band potential and E is the bias potential. (Note that this notation is different from that employed in the text.) (Reproduced with permission from Ref. [211].)...
An intriguing feature of the VSe2 electrodes sensitized with the thiapentaearbo-cyanine was that the photocurrent action spectra were a function of the bias potential applied to the electrode. For example, the maximum conversion efficiency at -0.4 V vs. Ag/AgCl was 1100 nm but shifted to 1080 nm at -1-0.05 V. The origin of these spectral shifts was attributed to sensitizer aggregates formed on the surface that have different conversion efficiencies [92]. [Pg.2747]


See other pages where The bias potential is mentioned: [Pg.158]    [Pg.199]    [Pg.351]    [Pg.74]    [Pg.83]    [Pg.84]    [Pg.85]    [Pg.91]    [Pg.92]    [Pg.92]    [Pg.93]    [Pg.321]    [Pg.419]    [Pg.226]    [Pg.75]    [Pg.84]    [Pg.182]    [Pg.128]    [Pg.152]    [Pg.189]    [Pg.9]    [Pg.237]    [Pg.237]    [Pg.395]    [Pg.406]    [Pg.238]    [Pg.356]    [Pg.234]    [Pg.345]    [Pg.4744]    [Pg.532]    [Pg.390]   


SEARCH



Biases

Potential bias

© 2024 chempedia.info