Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetralones, reactions

A further example is given below illustrating the use of a dibasic anhydride (succinic anhydride) the succinoylation reaction is a valuable one since it leads to aroyl carboxylic acids and ultimately to polynuclear hydrocarbons. This general scheme of synthesis of substituted hydrocarbons through the use of succinic anhydride is sometimes called the Haworth reaction. Thus a-tetralone (see below) may be reduced by the Clemmensen method to tetralin (tetrahydronaphthalene) and the latter converted into naphthalene either catal3d.ically or by means of sulphur or selenium (compare Section, VI,33). [Pg.726]

The Y-phenylbutyric acid is cyclised to a-tetralone by converting it into the acid chloride with thionyl chloride or phosphorus pentachloride and then an intramolecular Friedel and Crafts reaction is carried out ... [Pg.728]

To the cold acid chloride add 175 ml. of pure carbon disulphide, cool in ice, add 30 g, of powdered anhydrous aluminium chloride in one lot, and immediately attach a reflux condenser. When the evolution of hydrogen chloride ceases (about 5 minutes), slowly warm the mixture to the boiling point on a water bath. Reflux for 10 minutes with frequent shaking the reaction is then complete. Cool the reaction mixture to 0°, and decompose the aluminium complex by the cautious addition, with shaking, of 100 g. of crushed ice. Then add 25 ml. of concentrated hydrochloric acid, transfer to a 2 htre round-bottomed flask and steam distil, preferably in the apparatus, depicted in Fig. II, 41, 3 since the a-tetralone is only moderately volatile in steam. The carbon disulphide passes over first, then there is a definite break in the distillation, after whieh the a-tetralone distils completely in about 2 htres of distillate. [Pg.738]

The most recent, and probably most elegant, process for the asymmetric synthesis of (+)-estrone appHes a tandem Claisen rearrangement and intramolecular ene-reaction (Eig. 23). StereochemicaHy pure (185) is synthesized from (2R)-l,2-0-isopropyhdene-3-butanone in an overall yield of 86% in four chemical steps. Heating a toluene solution of (185), enol ether (187), and 2,6-dimethylphenol to 180°C in a sealed tube for 60 h produces (190) in 76% yield after purification. Ozonolysis of (190) followed by base-catalyzed epimerization of the C8a-hydrogen to a C8P-hydrogen (again similar to conversion of (175) to (176)) produces (184) in 46% yield from (190). Aldehyde (184) was converted to 9,11-dehydroestrone methyl ether (177) as discussed above. The overall yield of 9,11-dehydroestrone methyl ether (177) was 17% in five steps from 6-methoxy-l-tetralone (186) and (185) (201). [Pg.436]

Friedel-Crafts Acylation. The Friedel-Crafts acylation procedure is the most important method for preparing aromatic ketones and thein derivatives. Acetyl chloride (acetic anhydride) reacts with benzene ia the presence of aluminum chloride or acid catalysts to produce acetophenone [98-86-2], CgHgO (1-phenylethanone). Benzene can also be condensed with dicarboxyHc acid anhydrides to yield benzoyl derivatives of carboxyHc acids. These benzoyl derivatives are often used for constmcting polycycHc molecules (Haworth reaction). For example, benzene reacts with succinic anhydride ia the presence of aluminum chloride to produce P-benzoylpropionic acid [2051-95-8] which is converted iato a-tetralone [529-34-0] (30). [Pg.40]

The procedure described is an example of a more general synthetic method for the direct conversion of ketones into cyanides. " The reaction has been carried out successfully with acyclic and cyclic aliphatic ketones, including numerous steroidal ketones and aryl-alkyl ketones. The conversion of diaryl or highly hindered ketones such as camphor and )3,j8-dimethyl-a-tetralone requires the use of a more polar solvent. The dimethoxyethane used in the present procedure should be replaced by dimethyl sulfoxide. ... [Pg.10]

The pyrrolidine enamine of 2-tetralone (177) was converted to l-cyano-2-tetralone, which exists almost entirely in the enolic form (178), by reaction with cyanogen chloride (J23). Reaction of 177 with cyanogen bromide gave N-naphthylpyrrolidine (179), presumably via the unstable bromoenamine (180). The latter observation is in accord with the mode of reaction of the heterocyclic enamine (126) with cyanogen bromide, which resulted in the... [Pg.155]

In the first of these sequences, often called the Torgov-Smith synthesis, the initial step consists in condensation of a 2-alkyl-cyclopentane-l,3-dione with the allyl alcohol obtained from 6-methoxy-l-tetralone and vinylmagnesium chloride. Although this reaction at first sight resembles a classic SN displacement, the reaction is actually carried out with only a trace of base. [Pg.167]

More recent work in this series demonstrated that a carbonyl group can be interposed between the side-chaincarrying aromatic ring and the ethylene function with full retention of activity. Claisen condensation of benzoate with 2-tetralone affords the e-diketone Reaction of... [Pg.70]

A three-necked round-bottom flask is fitted with a dropping funnel, a thermometer, and a magnetic stirrer and is heated in a water bath to 30°. Tetralin (1.32 g, 0.01 mole) and 50 ml of 3.5 Anitric acid solution are placed in the flask and brought to temperature. Ceric ammonium nitrate (21.9 g, 0.04 mole) is dissolved in 100 ml of 3.5 N nitric acid, and the solution is added dropwise to the reaction mixture at a rate such that the temperature does not rise and only a pale yellow color is evident in the reaction mixture. At the completion of the reaction (1 to 2 hours), the mixture should be colorless. The solution is cooled to room temperature, diluted with an equal volume of water, and extracted twice with ether. The ether solution is dried with anhydrous sodium sulfate, filtered, and the ether is evaporated. The residue may be distilled to yield a-tetralone (bp 113-11676 mm or 170749 mm) or may be converted directly to the oxime, which is recrystallized from methanol, mp 88-89°. [Pg.14]

Bruce et al. carried out the cyclization of 4-phenylbutyric acid to tetralone in NaCl/AlCl3 (X(A1C13) = 0.68) at 180-200 °C [92]. The reaction between valerolactone and hydroquinone to give 3-methyl-4,7-dihydroxyindanone was also performed by Bruce, using the same ionic liquid and reaction conditions. These are shown in Scheme 5.1-60. [Pg.203]

The aromatization of the oxepin structure can be accompanied by other acid-catalyzed reactions such as the hydrolysis of ketals. Dimethyl 11 -oxo-6-oxabicyclo[5.4.0]undeca-l (7),2,4-triene-2,3-dicarboxylate ethylene ketal reacts in the presence of trifluoroacetic acid to give the tetralone system 3.133... [Pg.56]

The dihydronaphthalene-annelated pyranylidene complex 178, prepared according to reaction route E in Scheme 4 from /J-tetralone and complex 35, upon treatment with the pyrrolidinocyclopentene 174 n-1) or -cyclohexene 174 (n=2) at room temperature gave the tetracyclic compounds 179 in excellent... [Pg.52]

The problem with this synthesis is that essentially only para product (2) is formed in the initial Fricdel-Crafts reaction. A solution is to block the para position with a chlorine atom which can be removed by hydrogenolysis. This tetralone (1) is now a commercial product. [Pg.434]

This method fails, however, with bicyclic ketones such as 1-tetralones even in the presence of TsOH, affording only enol trimethylsilyl ethers such as 107 a [114, 115]. A subsequent investigation revealed that cyclohexanone reacts with equivalent amounts of N-trimethylsilyldimefhylamine 463 in the presence of TMSOTf 20 at -30 °C to give the enol silyl ether 107 a, whereas reaction of cyclohexanone, benzaldehyde, and chlorodimethyl ether with 463 and TMSOTf 20 or TCS 14 at 1-20 °C afforded the iminium salts 547, 548, and 549 in high yield [116-118]. Analogously, N-trimethylsilylpyrrolidine 550 and N-trimethylsilylmorphoHne 294 convert aldehydes such as benzaldehyde, at ambient temperature in the presence... [Pg.102]

Highly reactive mixed anhydrides can also promote acylation. Phenylacetic acid reacts with alkenes to give 2-tetralones in TFAA-H3P04.55 This reaction involves an intramolecular Friedel-Crafts alkylation subsequent to the acylation. [Pg.882]

Phenacyl radicals can be generated from the corresponding xanthates and add in good yield to various substituted propenes. The products of the reaction can then be cyclized to tetralones using an equivalent of a peroxide.313... [Pg.962]

A number of products in which one of the naphthalene rings has been reduced have interesting pharmacological properties. Reaction of tetralone 30 with dimethylamine under TiCl catalysis produces the corresponding enamine (31). Reaction with formic acid at room temperature effects reduction of the... [Pg.213]

The cooled reaction mixture is separated in a separatory funnel, and the aqueous phase is extracted with three 50-ml. portions of benzene. These extracts are combined with each other but kept separate from the original organic phase each wash solution is used first with the original organic phase, then the extracts. The washes are 150 ml. of water (Note 4), 100 ml. of 10% sodium carbonate solution, 100 ml. of water, and finally 50 ml. of saturated sodium chloride solution (Note 5). Solvent is distilled from the combined extracts, and the residue is distilled at reduced pressure in a Claisen flask. The yield of a-tetralone, b.p. 135-137°/15 mm., 1.5671-1.5672, is 75-80 g. (85-91%). [Pg.106]

Phenylnaphthalene has been prepared by the reaction of a-halonaphthalenes with mercury diphenyl3 6 or with benzene in the presence of aluminum chloride,6 and by means of the Gri-gnard synthesis, starting with either bromobenzene, cyclohexyl chloride, and a-tetralone 7 or with a-bromonaphthalene and cyclohexanone.6 8 9 Dehydrogenation of the reduced naphthalene has been accomplished by the use of sulfur,6 bromine,8 platinum black, or selenium.7 The formation of the hydrocar-... [Pg.44]

Johnson has developed two linear approaches to synthesize the C-nor-D-homosteroid skeleton (Scheme 2.2). In his first approach [21], tetralone 19, obtained from reduction of 2,5-dimethoxynaphthalene, was used as the source of the C,D-rings. The B- and A-rings were constructed by sequential Robinson annulations (19 —> 20 —> 21). The Cl 1,12 olefin was then introduced to provide 22. Ozonolysis of 22 followed by an aldol reaction of the resulting dialdehyde gave 23. Subsequent deformylation and deoxygenation afforded the cyclopamine skeleton 24. [Pg.28]

Reaction of 1-tetralone with aryl cyanides or methyl thiocyanate, followed by aromatisation with DDQ gave good yields of benzoquinazolines. The further transformation of the methylthio product 31, via oxidation and selective sequential nucleophilic substitution of the resulting sulfones, illustrates the utility of this substituent. 2-Tetralone reacted similarly but substantial amounts of by-products were formed <06T2799>. [Pg.392]

One-pot syntheses of diaryl-a-tetralones by Michael condensation and subsequent Robinson annulation reactions of isophorone with chalcones were performed efficiently in a solvent-free PTC system under the action of MW irradiation. Compared with conventional heating substantial rate enhancements were observed, within very short reaction times, by use of microwaves (Eq. 59 and Tab. 5.31). They were far better than those achieved by the classical method (NaOEt in EtOH under reflux for 24 h 40-56%). [Pg.175]

The use of such an oxazaborolidine system in a continuously operated membrane reactor was demonstrated by Kragl et /. 58] Various oxazaborolidine catalysts were prepared with polystyrene-based soluble supports. The catalysts were tested in a deadend setup (paragraph 4.2.1) for the reduction of ketones. These experiments showed higher ee s than batch experiments in which the ketone was added in one portion. The ee s vary from 84% for the reduction of propiophenone to up to >99% for the reduction of L-tetralone. The catalyst showed only a slight deactivation under the reaction conditions. The TTON could be increased from 10 for the monomeric system to 560 for the polymer-bound catalyst. [Pg.99]

The bath was cooled to —78 °C and a solution of 2-uobutylidene-1 -tetralone (200 mg) in anhydrous toluene (2mL) was added via a syringe to the cold mixture. The reaction mixture was stirred at this temperature for 30 minutes... [Pg.63]


See other pages where Tetralones, reactions is mentioned: [Pg.738]    [Pg.208]    [Pg.278]    [Pg.342]    [Pg.49]    [Pg.68]    [Pg.59]    [Pg.738]    [Pg.218]    [Pg.215]    [Pg.1628]    [Pg.75]    [Pg.105]    [Pg.383]    [Pg.207]    [Pg.817]    [Pg.1139]    [Pg.13]   
See also in sourсe #XX -- [ Pg.412 ]




SEARCH



1-Tetralone

2-tetralones

Tetralon

© 2024 chempedia.info