Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Testing tolerances

Philosophy of quality systems Testing of electrical machines Procedure for testing Load test No-load test Tolerances in test results Certification of motors used in hazardous locations... [Pg.997]

NOTE 2 The 10% differential pressure margin is intended to accommodate head increases (5.1.6), higher speed in variable-speed pumps (5.1.7) and head (testing) tolerance (see 7.3.S.4). [Pg.34]

Species tested Tolerated concentration, ng/mL Decay Peak rate, VD height, h Selectivity factor, VD/h... [Pg.186]

Test better than control Test tolerably worse than control Test appreciably worse than control ... [Pg.188]

Must test tolerability efficacy beforehand (i.e. tablets/test dose)... [Pg.123]

Negative tests (failure injections, limit tests, tolerance chain tests, stress tests (including EMC)) mainly show the robustness of components. The failure injection shows the correct function of the safety mechanisms, the correct assumption of the error propagation, the sufficient robustness, the behavior at inadmissible configurations and the compliance of functional and technical limitations. [Pg.192]

Frequency of VaUdatUm—Ouot the calibration of the instrument has been validated, it need only be revalidated when either the instrument has been recalitmted due to repair or when the quality control check samples are outside of the test tolerance. [Pg.990]

The first three of these are well known. Flexural deflection at peak load is a test developed at ExxonMobil Chemical Company and described previously. In this test tolerance of high energy radiation by a polymer is exhibited by the retention of original level of deflection at peak load. [8]... [Pg.2834]

This type of coil was prepared from copper cladded printed circuit board material by applying photolithographic techniques. The p.c. board material is available with difierent copper thicknesses and with either a stiff or a flexible carrier. The flexible material offers the opportunity to adapt the planar coil to a curved three dimensional test object. In our turbine blade application this is a major advantage. The thickness of the copper layer was chosen to be 17 pm The period of the coil was 100 pm The coils were patterned by wet etching, A major advantage of this approach is the parallel processing with narrow tolerances, resulting in many identical Eddy current probes. An example of such a probe is shown in fig. 10. [Pg.303]

Additionally, tests with reference procedures have already been conducted. However, due to the occurrence of geometric and electrical tolerances during tests, no satisfactory results have been obtained so far. [Pg.310]

In addition, the mirrors are adjustable, so that unimportant areas can be ignored. Light re-emmited from the surfaee is detected, and the detector signal is transmitted to a computer programmed with acceptable deviation levels for comparison with a reference component. Tolerance levels can vary for different areas of the same test piece they may, for example, be higher on a ground section than on adjacent unmachined areas. [Pg.640]

Thanks go to Dr. Michael McKee at Auburn University and the Alabama Research and Education Network, both of which allowed software to be tested on their computers. Thanks are also due the Nichols Research Corporation and Computer Sciences Corporation and particularly Scott von Laven and David Ivey for being so tolerant of employees engaged in such job-related extracurricular activities. [Pg.399]

Table 1 is condensed from Handbook 44. It Hsts the number of divisions allowed for each class, eg, a Class III scale must have between 100 and 1,200 divisions. Also, for each class it Hsts the acceptance tolerances appHcable to test load ranges expressed in divisions (d) for example, for test loads from 0 to 5,000 d, a Class II scale has an acceptance tolerance of 0.5 d. The least ambiguous way to specify the accuracy for an industrial or retail scale is to specify an accuracy class and the number of divisions, eg. Class III, 5,000 divisions. It must be noted that this is not the same as 1 part in 5,000, which is another method commonly used to specify accuracy eg, a Class III 5,000 d scale is allowed a tolerance which varies from 0.5 d at zero to 2.5 d at 5,000 divisions. CaHbration curves are typically plotted as in Figure 12, which shows a typical 5,000-division Class III scale. The error tunnel (stepped lines, top and bottom) is defined by the acceptance tolerances Hsted in Table 1. The three caHbration curves belong to the same scale tested at three different temperatures. Performance must remain within the error tunnel under the combined effect of nonlinearity, hysteresis, and temperature effect on span. Other specifications, including those for temperature effect on zero, nonrepeatabiHty, shift error, and creep may be found in Handbook 44 (5). The acceptance tolerances in Table 1 apply to new or reconditioned equipment tested within 30 days of being put into service. After that, maintenance tolerances apply they ate twice the values Hsted in Table 1. Table 1 is condensed from Handbook 44. It Hsts the number of divisions allowed for each class, eg, a Class III scale must have between 100 and 1,200 divisions. Also, for each class it Hsts the acceptance tolerances appHcable to test load ranges expressed in divisions (d) for example, for test loads from 0 to 5,000 d, a Class II scale has an acceptance tolerance of 0.5 d. The least ambiguous way to specify the accuracy for an industrial or retail scale is to specify an accuracy class and the number of divisions, eg. Class III, 5,000 divisions. It must be noted that this is not the same as 1 part in 5,000, which is another method commonly used to specify accuracy eg, a Class III 5,000 d scale is allowed a tolerance which varies from 0.5 d at zero to 2.5 d at 5,000 divisions. CaHbration curves are typically plotted as in Figure 12, which shows a typical 5,000-division Class III scale. The error tunnel (stepped lines, top and bottom) is defined by the acceptance tolerances Hsted in Table 1. The three caHbration curves belong to the same scale tested at three different temperatures. Performance must remain within the error tunnel under the combined effect of nonlinearity, hysteresis, and temperature effect on span. Other specifications, including those for temperature effect on zero, nonrepeatabiHty, shift error, and creep may be found in Handbook 44 (5). The acceptance tolerances in Table 1 apply to new or reconditioned equipment tested within 30 days of being put into service. After that, maintenance tolerances apply they ate twice the values Hsted in Table 1.
AWS) has issued specifications covering the various filler-metal systems and processes (2), eg, AWS A5.28 which appHes to low alloy steel filler metals for gas-shielded arc welding. A typical specification covers classification of relevant filler metals, chemical composition, mechanical properties, testing procedures, and matters related to manufacture, eg, packaging, identification, and dimensional tolerances. New specifications are issued occasionally, in addition to ca 30 estabUshed specifications. Filler-metal specifications are also issued by the ASME and the Department of Defense (DOD). These specifications are usually similar to the AWS specification, but should be specifically consulted where they apply. [Pg.348]

Toxicity. Sodium fluoroacetate is one of the most effective all-purpose rodenticides known (18). It is highly toxic to all species of rats tested and can be used either in water solution or in bait preparations. Its absence of objectionable taste and odor and its delayed effects lead to its excellent acceptance by rodents. It is nonvolatile, chemically stable, and not toxic or irritating to the unbroken skin of workers. Rats do not appear to develop any significant tolerance to this compound from nonlethal doses. However, it is extremely dangerous to humans, to common household pets, and to farm animals, and should only be used by experienced personnel. The rodent carcasses should be collected and destroyed since they remain poisonous for a long period of time to any animal that eats them. [Pg.307]

How Many Samples. A first step in deciding how many samples to collect is to divide what constitutes an overexposure by how much or how often an exposure can go over the exposure criteria limit before it is considered important. Given this quantification of importance it is then possible to calculate, using an assumed variabihty, how many samples are required to demonstrate just the significance of an important difference if one exists (5). This is the minimum number of samples required for each hypothesis test, but more samples are usually collected. In the usual tolerance limit type of testing where the criteria is not more than some fraction of predicted exceedances at some confidence level, increasing the number of samples does not increase confidence as much as in tests of means. Thus it works out that the incremental benefit above about seven samples is small. [Pg.107]

The hardware and software used to implement LIMS systems must be vahdated. Computers and networks need to be examined for potential impact of component failure on LIMS data. Security concerns regarding control of access to LIMS information must be addressed. Software, operating systems, and database management systems used in the implementation of LIMS systems must be vahdated to protect against data cormption and loss. Mechanisms for fault-tolerant operation and LIMS data backup and restoration should be documented and tested. One approach to vahdation of LIMS hardware and software is to choose vendors whose products are precertified however, the ultimate responsibihty for vahdation remains with the user. Vahdating the LIMS system s operation involves a substantial amount of work, and an adequate vahdation infrastmcture is a prerequisite for the constmction of a dependable and flexible LIMS system. [Pg.518]

Depending on their stmctural type, PEPE oils are stable up to 300—400°C ia air. Pure oxygen ia a test bomb at 13 MPa (1886 psi) at temperatures up to 400°C was tolerated with no ignition (43). Densities at 20°C vary from 1.82 to 1.89 g/mL, and viscosities from 10 to 1600 mm /s. The pour poiat for low temperature operation usually ranges from —30 to —70° C, and the viscosity iadex varies from about 50 for low viscosity grades up to 150 for more viscous oils and considerably higher for fully linear polymers (43). [Pg.246]

Human and animal studies indicate that inorganic manganese compounds have a very low acute toxicity by any route of exposure. The toxicity values for a given Mn compound are shown in Table 20 to depend on the species of test animal as well as the route of exposure. Manganese concentrations as high as 2000 ppm were found to be tolerated by test animals over a six-month period without any ill effects (208). [Pg.525]

Dry-heat sterilization is generally conducted at 160—170°C for >2 h. Specific exposures are dictated by the bioburden concentration and the temperature tolerance of the products under sterilization. At considerably higher temperatures, the required exposure times are much shorter. The effectiveness of any cycle type must be tested. For dry-heat sterilization, forced-air-type ovens are usually specified for better temperature distribution. Temperature-recording devices are recommended. [Pg.407]

Spot Test (AASHTO T102). The test distinguishes asphalts that contain bodies poorly tolerated by the asphalt system. [Pg.371]


See other pages where Testing tolerances is mentioned: [Pg.81]    [Pg.251]    [Pg.162]    [Pg.27]    [Pg.81]    [Pg.251]    [Pg.162]    [Pg.27]    [Pg.37]    [Pg.729]    [Pg.1015]    [Pg.96]    [Pg.470]    [Pg.353]    [Pg.374]    [Pg.128]    [Pg.2]    [Pg.123]    [Pg.272]    [Pg.361]    [Pg.145]    [Pg.332]    [Pg.21]    [Pg.228]    [Pg.387]    [Pg.146]    [Pg.148]    [Pg.150]    [Pg.472]    [Pg.385]    [Pg.291]    [Pg.114]    [Pg.463]   
See also in sourсe #XX -- [ Pg.266 ]




SEARCH



© 2024 chempedia.info