Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terpenes, hydrogenation

Hydrogenated Resins Hydrogenated C9 Hydrogenated dicyclopentadiene Hydrogenated terpenes Hydrogenated pure monomer resins... [Pg.110]

Most PSAs are based on natural rubber. Rubber by itself has very low tack and adhesion to surfaces thus requires addition of tackifying resins based on rosins, petroleum, or terpenes. Hydrogenated resins are... [Pg.169]

C, b.p. 156 C. The most important of the terpene hydrocarbons. It is found in most essential oils derived from the Coniferae, and is the main constituent of turpentine oil. Contains two asymmetric carbon atoms. The (- -)-form is easily obtained in a pure state by fractionation of Greek turpentine oil, of which it constitutes 95%. Pinene may be separated from turpentine oil in the form of its crystalline nitrosochloride, CioHigClNO, from which the ( + )-form may be recovered by boiling with aniline in alcoholic solution. When heated under pressure at 250-270 C, a-pinene is converted into dipentene. It can be reduced by hydrogen in the presence of a catalyst to form... [Pg.314]

Hydrocarbons, compounds of carbon and hydrogen, are stmcturally classified as aromatic and aliphatic the latter includes alkanes (paraffins), alkenes (olefins), alkynes (acetylenes), and cycloparaffins. An example of a low molecular weight paraffin is methane [74-82-8], of an olefin, ethylene [74-85-1], of a cycloparaffin, cyclopentane [287-92-3], and of an aromatic, benzene [71-43-2]. Cmde petroleum oils [8002-05-9], which span a range of molecular weights of these compounds, excluding the very reactive olefins, have been classified according to their content as paraffinic, cycloparaffinic (naphthenic), or aromatic. The hydrocarbon class of terpenes is not discussed here. Terpenes, such as turpentine [8006-64-2] are found widely distributed in plants, and consist of repeating isoprene [78-79-5] units (see Isoprene Terpenoids). [Pg.364]

Paint and varnish manufacturing Resin manufacturing closed reaction vessel Varnish cooldng-open or closed vessels Solvent thinning Acrolein, other aldehydes and fatty acids (odors), phthalic anhydride (sublimed) Ketones, fatty acids, formic acids, acetic acid, glycerine, acrolein, other aldehydes, phenols and terpenes from tall oils, hydrogen sulfide, alkyl sulfide, butyl mercaptan, and thiofen (odors) Olefins, branched-chain aromatics and ketones (odors), solvents Exhaust systems with scrubbers and fume burners Exhaust system with scrubbers and fume burners close-fitting hoods required for open kettles Exhaust system with fume burners... [Pg.2177]

Forests can act as sources of some of the trace gases in the atmosphere, such as hydrocarbons, hydrogen sulfide, NO, and NH3. Forests have been identified as emitters of terpene hydrocarbons. In 1960, Went (10) estimated that hydrocarbon releases to the atmosphere were on the order of 108 tons per year. Later work by Rasmussen (11) suggested that the release of terpenes from forest systems is 2 x 10 tons of reactive materials per year on a global basis. This is several times the anthropogenic input. Yet, it is important to remember that forest emissions are much more widely dispersed and less concentrated than anthropogenic emissions. Table 8-2 shows terpene emissions from different types of forest systems in the United States. [Pg.117]

Hydrogen fluoride adds to more complex molecules, such as unsaturated steroids, to give fluorinated derivatives [/, 8] Low temperatures and inert diluents, such as tetrahydrofuran or methylene chloride, are generally employed. With bicyclic unsaturated terpenes, rearrangements often accompany addition to the double bond [/]. [Pg.54]

WojQo 1-4652) in absolute ethereal solution was allowed to react with palladium black. After a few hours hydrogen was passed into the liquid at ordinary temperature, giving rise to a terpene possessing the following... [Pg.49]

This terpene has been isolated by Simonsen from Indian turpentine oil, from Pinus longifolia. It is identical with the terpene previously described by Robinson as a terpene yielding sylvestrene hydrochloride when treated with hydrogen chloride. Its characters are as follows —... [Pg.75]

NMHC. A large number of hydrocarbons are present in petroleum deposits, and their release during refining or use of fuels and solvents, or during the combustion of fuels, results in the presence of more than a hundred different hydrocarbons in polluted air (43,44). These unnatural hydrocarbons join the natural terpenes such as isoprene and the pinenes in their reactions with tropospheric hydroxyl radical. In saturated hydrocarbons (containing all single carbon-carbon bonds) abstraction of a hydrogen (e,g, R4) is the sole tropospheric reaction, but in unsaturated hydrocarbons HO-addition to a carbon-carbon double bond is usually the dominant reaction pathway. [Pg.69]

Addition of molten sulfur to limonene in a 9 kl reactor led to a violent runaway exothermic reaction. Small scale pilot runs had not shown the possibility of this. Heating terpenes strongly with sulfur usually leads to formation of benzene derivatives with evolution of hydrogen sulfide. [Pg.1900]

Fiirstner and coworkers developed a new Pt- and Au-catalyzed cycloisomerization of hydroxylated enynes 6/4-141 to give the bicylo[3.1.0]hexanone skeleton 6/4-143, which is found in a large number of terpenes [317]. It can be assumed that, in the case of the Pt-catalysis, a platinum carbene 6/4-142 is formed, which triggers an irreversible 1,2-hydrogen shift. The complexity of the product/substrate relationship can be increased by using a mixture of an alkynal and an allyl silane in the presence of PtCl2 to give 6/4-143 directly, in 55 % yield (Scheme 6/4.36). [Pg.480]

However, it was observed that, for each compound, the sampling profile was the same for the five fibre coatings. It could be deduced that the quantity of terpene trapped is independent of the nature of the fibre coating. This behaviour can be explained easily, as the interactions between compounds and fibres are not specific. This is not very surprising because of the nature of the terpenes studied, which are principally composed of carbon and hydrogen. [Pg.273]

Both the rhodium and ruthenium catalysts have been used to successively hydrogenate the terpene geraniol (3) to citronellol (4) and 3,7-dimethyl-octanol (J08) ... [Pg.327]

Olefins with allylic hydrogen, chloro- and fluoroolefins, terpenes, tetrahydronaphthalene > c=c<... [Pg.543]

Isomerization of allylic amines is another example of the application of the BINAP complex. Rh BINAP complex catalyzes the isomerization of N,N-diethylnerylamine 40 generated from myrcene 39 with 76-96% optical yield. Compound (R)-citronellal (R)-42. prepared through hydrolysis of (R)-41, is then cyclized by zinc bromide treatment.49 Catalytic hydrogenation then completes the synthesis of (—)-menthol. This enantioselective catalysis allows the annual production of about 1500 tons of menthol and other terpenic substances by Takasago International Corporation.50... [Pg.354]

Stereoselective reduction of some triazolodiazines (derivatives of ring systems 33 and 37) bearing chiral terpene residues has been elaborated by Groselj el al. <2006TA79>. With catalytic hydrogenation, partial saturation of the six-membered ring was experienced, while reaction with borane-methyl sulfide resulted in formation of triazole-boron complexes. [Pg.755]

Terpenes are a large and diverse class of compounds produced by a wide variety of organisms, though plants are an especially prolific source. The terms terpenoid and isoprenoid can be used interchangeably with terpene, though, strictly, terpenes are hydrocarbons (composed only of carbon and hydrogen) while terpenoids and iso-prenoids have been further functionalized. [Pg.9]

Lipids A class of organic compounds composed of carbon, hydrogen, and oxygen atoms. Complex lipids contain fatty acids attached to a backbone molecule such as glycerol. Simple lipids, such as carotene, are polymers of terpene. Lipids are used in organisms for energy storage. [Pg.879]


See other pages where Terpenes, hydrogenation is mentioned: [Pg.116]    [Pg.2077]    [Pg.142]    [Pg.116]    [Pg.2077]    [Pg.142]    [Pg.123]    [Pg.247]    [Pg.234]    [Pg.11]    [Pg.298]    [Pg.120]    [Pg.283]    [Pg.503]    [Pg.723]    [Pg.355]    [Pg.41]    [Pg.200]    [Pg.956]    [Pg.34]    [Pg.202]    [Pg.983]    [Pg.48]    [Pg.379]    [Pg.187]    [Pg.188]    [Pg.325]    [Pg.350]    [Pg.486]    [Pg.757]    [Pg.363]    [Pg.277]    [Pg.712]   
See also in sourсe #XX -- [ Pg.390 ]




SEARCH



Partially hydrogenated terpenes

Terpenes hydrogen eliminations

Terpenes hydrogen rearrangements

© 2024 chempedia.info