Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature profiles, reactors jacketed tubular reactor

Figure 5.19 Temperature profiles for a tubular reactor with jacket cooling (a) Parallel flow, high coolant rate (b) parallel flow, moderate coolant rate (c) counter-current flow, moderate coolant rate. [Pg.219]

Temperature profiles, reactors ammonia synthesis, 582, 584 cement kiln, 590 cracking of petroleum, 595 endo- and exothermic processes, 584 jacketed tubular reactor, 584 methanol synthesis, 580 phosgene synthesis, 594 reactor with internal heat exchange, 584 sulfur dioxide oxidation, 580... [Pg.755]

Figure 1. Typical reactor temperature profile for continuous addition polymerization a plug-flow tubular reactor. Kinetic parameters for the initiator 1 = 10 ppm Ea = 32.921 kcal/mol In = 26.492 In sec f = 0.5. Reactor parameter [(4hT r)/ (DpCp)] = 5148.2. [(Cp) = heat capacity of the reaction mixture (p) = density of the reaction mixture (h) = overall heat-transfer coefficient (Tf) = reactor jacket temperature (r) = reactor residence time (D) = reactor diameter]. Figure 1. Typical reactor temperature profile for continuous addition polymerization a plug-flow tubular reactor. Kinetic parameters for the initiator 1 = 10 ppm Ea = 32.921 kcal/mol In = 26.492 In sec f = 0.5. Reactor parameter [(4hT r)/ (DpCp)] = 5148.2. [(Cp) = heat capacity of the reaction mixture (p) = density of the reaction mixture (h) = overall heat-transfer coefficient (Tf) = reactor jacket temperature (r) = reactor residence time (D) = reactor diameter].
The ability to manipulate reactor temperature profile in the polymerization tubular reactor is very important since it directly relates to conversion and resin product properties. This is often done by using different initiators at various concentrations and at different reactor jacket temperature. The reactor temperature response in terms of the difference between the jacket temperature and the peak temperature (0=Tp-Tj) is plotted in Figure 2 as a function of the jacket temperature for various inlet initiator concentrations. The temperature response not only depends on the jacket temperature but also, for certain combinations of the variables, it is very sensitive to the jacket temperature. [Pg.228]

A final mode of heat transfer in tubular reactors is the feed-cooled reactor, where the hot products from the reactor are cooled by the feed before it enters the reactor. As shown in Figure S-22, the cold feed in the jacket is preheated by the reaction in the inner tube or a heat exchanger is used for this purpose before the reactor. Temperature profiles for feed cooling are shown in Figure 5-22. [Pg.238]

Figure 17.23. Representative temperature profiles in reaction systems (see also Figs. 17.20, 17.21(d), 17.22(d), 17.30(c), 17.34, and 17.35). (a) A jacketed tubular reactor, (b) Burner and reactor for high temperature pyrolysis of hydrocarbons (Ullmann, 1973, Vol. 3, p. 355) (c) A catalytic reactor system in which the feed is preheated to starting temperature and product is properly adjusted exo- and endothermic profiles, (d) Reactor with built-in heat exchange between feed and product and with external temperature adjustment exo- and endothermic profiles. Figure 17.23. Representative temperature profiles in reaction systems (see also Figs. 17.20, 17.21(d), 17.22(d), 17.30(c), 17.34, and 17.35). (a) A jacketed tubular reactor, (b) Burner and reactor for high temperature pyrolysis of hydrocarbons (Ullmann, 1973, Vol. 3, p. 355) (c) A catalytic reactor system in which the feed is preheated to starting temperature and product is properly adjusted exo- and endothermic profiles, (d) Reactor with built-in heat exchange between feed and product and with external temperature adjustment exo- and endothermic profiles.
In the literature many studies on LDPE tubular reactors are found (2-6).All these studies present models of the tubular reactor, able to predict the influence, on monomer conversion and temperature profiles, of selected variables such as initiator concentration and jacket temperature. With the exception of the models of Mullikin, that is an analog computer model of an idealized plug-flow reactor, and of Schoenemann and Thies, for which insufficient details are given, all the other models developed so far appear to have some limitations either in the basic hypotheses or in the fields of application. [Pg.581]

Calculate the temperature profiles for the following reaction carried out in a 2-cm-diameter tubular reactor with feed and jacket temperatures of about 350 K. [Pg.191]

Figure 5.5 Temperature profiles and conversion for a jacketed tubular reactor,... Figure 5.5 Temperature profiles and conversion for a jacketed tubular reactor,...

See other pages where Temperature profiles, reactors jacketed tubular reactor is mentioned: [Pg.296]    [Pg.218]    [Pg.217]    [Pg.431]    [Pg.313]   
See also in sourсe #XX -- [ Pg.584 ]

See also in sourсe #XX -- [ Pg.617 ]

See also in sourсe #XX -- [ Pg.584 ]

See also in sourсe #XX -- [ Pg.584 ]

See also in sourсe #XX -- [ Pg.584 ]




SEARCH



Jacket

Jacketing

Reactor temperature

Temperature profiles, reactors

Tubular reactor temperature profile

Tubular reactors

Tubular temperature profile

© 2024 chempedia.info