Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Internal heat exchange, reactor with

Reactions are either endothermic and require heating to complete the reaction, or exothermic and raise the temperature, thus requiring some type of cooling such as quenching or an internal heat exchanger to remove reaction heat. The reactors are provided with various types of internals to support the catalyst and distribute the reaction components uniformly across the catalyst area collection internals remove the products and other distribution. [Pg.76]

Figure 6-10. An autothermal multi-tubular reactor with an internal heat exchanger. Figure 6-10. An autothermal multi-tubular reactor with an internal heat exchanger.
Internal heat exchange is realized by heat conduction from the microstructured reaction zone to a mini channel heat exchanger, positioned in the rear of the reaction zone [1,3,4], The falling film micro reactor can be equipped, additionally, with an inspection window. This allows a visually check of the quality of film formation and identification of flow misdistribution. Furthermore, photochemical gas/liquid contacting can be carried out, given transparency of the window material for the band range of interest [6], In some cases an inspection window made of silicon was used to allow observation of temperature changes caused by chemical reactions or physical interactions by an IR camera [4, 5]. [Pg.579]

The first application of a rhodium-ligand system was realized in the LPO-process (low pressure oxo Fig. 18). Huge stirred tank reactors are used, equipped with internal heat exchangers to control the heat of reaction. The solution of the catalyst recycle is simple but efficient. The catalyst remains in the reactor, products and unconverted propene are stripped by a huge excess of synthesis gas. Because of strong foaming, only a part of the reaction volume is used. After the gas has left the reactor, the products are removed by condensing, the big part of synthesis gas is separated from the liquid products and recycled via compressors. The liquid effluent of the gas-liquid separator... [Pg.33]

Figure 17.18. Heat transfer in fixed-bed reactors (a) adequate preheat (b) internal heat exchanger (c) annular cooling spaces (d) packed tubes (e) packed shell (f) tube and thimble (g) external heat exchanger (h) multiple shell, with external heat transfer (Walas, 1959). Figure 17.18. Heat transfer in fixed-bed reactors (a) adequate preheat (b) internal heat exchanger (c) annular cooling spaces (d) packed tubes (e) packed shell (f) tube and thimble (g) external heat exchanger (h) multiple shell, with external heat transfer (Walas, 1959).
Figure 17.24. Types of reactors for synthetic fuels [Meyers (Ed.), Handbook of Synfuels Technology, McGraw-Hill, New York, 1984], (a) ICI methanol reactor, showing internal distributors. C, D and E are cold shot nozzles, F = catalyst dropout, L = thermocouple, and O = catalyst input, (b) ICI methanol reactor with internal heat exchange and cold shots, (c) Fixed bed reactor for gasoline from coal synthesis gas dimensions 10 x 42 ft, 2000 2-in. dia tubes packed with promoted iron catalyst, production rate 5 tons/day per reactor, (d) Synthol fluidized bed continuous reactor system for gasoline from coal synthesis gas. Figure 17.24. Types of reactors for synthetic fuels [Meyers (Ed.), Handbook of Synfuels Technology, McGraw-Hill, New York, 1984], (a) ICI methanol reactor, showing internal distributors. C, D and E are cold shot nozzles, F = catalyst dropout, L = thermocouple, and O = catalyst input, (b) ICI methanol reactor with internal heat exchange and cold shots, (c) Fixed bed reactor for gasoline from coal synthesis gas dimensions 10 x 42 ft, 2000 2-in. dia tubes packed with promoted iron catalyst, production rate 5 tons/day per reactor, (d) Synthol fluidized bed continuous reactor system for gasoline from coal synthesis gas.
The essential feature of an autothermal reactor system is the feedback of reaction heat to raise the temperature and hence the reaction rate of the incoming reactant stream. Figure 1.6 shows a number of ways in which this can occur. With a tubular reactor the feedback may be achieved by external heat exchange, as in the reactor shown in Fig. 1.6a, or by internal heat exchange as in Fig. 1.6b. Both of these are catalytic reactors their thermal characteristics are discussed in more detail in Chapter 3, Section 3.6.2. Being catalytic the reaction can only take place in that part of the reactor which holds the catalyst, so the temperature profile has the form... [Pg.8]

Temperature profiles, reactors ammonia synthesis, 582, 584 cement kiln, 590 cracking of petroleum, 595 endo- and exothermic processes, 584 jacketed tubular reactor, 584 methanol synthesis, 580 phosgene synthesis, 594 reactor with internal heat exchange, 584 sulfur dioxide oxidation, 580... [Pg.755]


See other pages where Internal heat exchange, reactor with is mentioned: [Pg.93]    [Pg.380]    [Pg.84]    [Pg.30]    [Pg.329]    [Pg.84]    [Pg.611]    [Pg.21]    [Pg.2]    [Pg.1046]    [Pg.528]    [Pg.97]    [Pg.184]    [Pg.285]    [Pg.388]    [Pg.123]    [Pg.417]    [Pg.770]    [Pg.611]    [Pg.611]    [Pg.514]    [Pg.396]    [Pg.378]    [Pg.414]    [Pg.521]   
See also in sourсe #XX -- [ Pg.509 ]

See also in sourсe #XX -- [ Pg.540 ]




SEARCH



Heat exchanger reactor

Heat-exchange reactor

Heating internal

Internal heat

Reactor internal

Reactor internals

Temperature profiles, reactors reactor with internal heat exchange

With internal heat exchange

© 2024 chempedia.info