Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic fibers processing

Is used in the textile industry as an antistat and lubricant for wool and synthetic fiber processing, and as a co-emulsifier and antistat in synthetic fiber spin finishes. It is also an anti-precipitant, leveling, and migrating agent in various dyeing procedures, and an antistat in carpet shampoos. [Pg.368]

Textiles. In the area of textile and synthetic fiber processing, amine oxides have been used as dyeing auxiUaties as well as wetting agents (51,52), as antistatic agents (qv) (53—55), and as bleaching agents (56,57). [Pg.192]

Antistat and lubricant for wool and synthetic fiber processing. [Pg.199]

Antiprecipitant for mixed dye baths leveling agent for acid dyes migrating agent for dispersed dyes antistat for synthetic fiber processing. [Pg.526]

Essentially all the ammonium sulfate fertilizer used in the United States is by-product material. By-product from the acid scmbbing of coke oven gas is one source. A larger source is as by-product ammonium sulfate solution from the production of caprolactam (qv) and acrylonitrile, (qv) which are synthetic fiber intermediates. A third but lesser source is from the ammoniation of spent sulfuric acid from other processes. In the recovery of by-product crystals from each of these sources, the crystallization usually is carried out in steam-heated sa turator—crystallizers. Characteristically, crystallizer product is of a particle size about 90% finer than 16 mesh (ca 1 mm dia), which is too small for satisfactory dry blending with granular fertilizer materials. Crystals of this size are suitable, however, as a feed material to mixed fertilizer granulation plants, and this is the main fertilizer outlet for by-product ammonium sulfate. [Pg.221]

The mechanical properties of acryUc and modacryUc fibers are retained very well under wet conditions. This makes these fibers well suited to the stresses of textile processing. Shape retention and maintenance of original bulk in home laundering cycles are also good. Typical stress—strain curves for acryhc and modacryUc fibers are compared with wool, cotton, and the other synthetic fibers in Figure 2. [Pg.275]

Aloisture Absorbent Synthetic Paper. Processes for making a water absorbent synthetic paper with dimensional stabihty have been developed by several companies. In a process developed by Mitsubishi Rayon, acrylic fiber is insolubilized by hydra2ine and then hydroly2ed with sodium hydroxide. The paper, formed from 100 parts fiber and 200 parts pulp, has a water absorption 28 times its own weight (96). Processes for making hygroscopic fibers have also been reported in the patent Hterature. These fibers are used in moisture absorbing nonwovens for sanitary napkins, filters, and diapers. [Pg.285]

Moisture Absorbency. PVA fiber is more hygroscopic than any other synthetic fiber. The hygroscopicity varies depending on how the fiber is processed after spinning, ie, in heat-drawing, he at-treatment, acetalization, and the like. [Pg.341]

AH synthetic fibers are produced as continuous filaments, either as yams or tows. Yams are fine enough to be woven or knitted direcdy, but caimot be intimately blended with other fibers on the principal conversion systems used for cotton or wool. For these processes, staple fibers, made by cutting the much larger tows into short lengths, are needed. Tows can also be stretch broken into sHvers or tops, which can then be drawn out and twisted into spun-yams. [Pg.344]

Bulky Rayons. Unlike the thermoplastic synthetic fibers, viscose rayon cannot be bulked by mechanical crimping processes. Crimpers impart crimp to a regenerated cellulose fiber but it is not a permanent crimp and will not survive wetting out. [Pg.349]

Asahi Chemical Industries (ACl, Japan) are now the leading producers of cuprammonium rayon. In 1990 they made 28,000 t/yr of filament and spunbond nonwoven from cotton ceUulose (65). Their continuing success with a process which has suffered intense competition from the cheaper viscose and synthetic fibers owes much to their developments of high speed spinning technology and of efficient copper recovery systems. Bemberg SpA in Italy, the only other producer of cuprammonium textile fibers, was making about 2000 t of filament yam in 1990. [Pg.350]

In conjunction with the increased use of synthetic fibers and blends of synthetic and natural fibers, and the modernisation of appHcation processes which has taken place simultaneously, the technique of textile whitening has been improved considerably. [Pg.119]

Whitening in combination with the finishing process is used primarily for woven fabrics of ceUulosic fibers and their blends with synthetic fibers. [Pg.119]

Synthetic Fiber and Plastics Industries. In the synthetic fibers and plastics industries, the substrate itself serves as the solvent, and the whitener is not appHed from solutions as in textiles. Table 6 Hsts the types of FWAs used in the synthetic fibers and plastic industries. In the case of synthetic fibers, such as polyamide and polyester produced by the melt-spinning process, FWAs can be added at the start or during the course of polymerization or polycondensation. However, FWAs can also be powdered onto the polymer chips prior to spinning. The above types of appHcation place severe thermal and chemical demands on FWAs. They must not interfere with the polymerization reaction and must remain stable under spinning conditions. [Pg.119]

Searching a crime scene is a complex process (25), involving poHce, crime scene technicians, and forensic scientists. The procedure requires careful documentation, collection, and preservation of the evidence. Trace evidence (26) in criminal investigations typically consists of hairs (27,28) both natural and synthetic fibers (qv) (29,30), fabrics glass (qv) (31,32) plastics (33) sod plant material budding material such as cement (qv), paint (qv), stucco, wood (qv), etc (34), flammable fluid residues (35,36), eg, in arson investigations explosive residues, eg, from bombings (37,38) (see Explosives and propellents), and so on. [Pg.487]

Methyl- and dimethylnaphthalenes are contained in coke-oven tar and in certain petroleum fractions in significant amounts. A typical high temperature coke-oven coal tar, for example, contains ca 3 wt % of combined methyl- and dimethylnaphthalenes (6). In the United States, separation of individual isomers is seldom attempted instead a methylnaphtha1 ene-rich fraction is produced for commercial purposes. Such mixtures are used for solvents for pesticides, sulfur, and various aromatic compounds. They also can be used as low freezing, stable heat-transfer fluids. Mixtures that are rich in monomethyinaphthalene content have been used as dye carriers (qv) for color intensification in the dyeing of synthetic fibers, eg, polyester. They also are used as the feedstock to make naphthalene in dealkylation processes. PhthaUc anhydride also can be made from m ethyl n aph th al en e mixtures by an oxidation process that is similar to that used for naphthalene. [Pg.487]

Dry-Laid Pulp. A principal objective of using air to form webs from natural and synthetic fiber pulps is to produce relatively lofty, porous stmctures from short fibers, without using water. Early technical developments in air-laid pulp processing were made by Kroyer in Denmark. [Pg.151]

Sorbitan oleate and the monolaurate are pale yeUow Hquids. Palmitates and stearates are light tan soHds. Sorbitan esters are not soluble in water but dissolve in a wide range of mineral and vegetable oils. They are lipophilic emulsifiers, solubiHzers, softeners, and fiber lubricants that find appHcation in synthetic fiber manufacture, textile processing, and cosmetic products. Sorbitan esters have been approved for human ingestion and are widely used as emulsifiers and solubiHzers in foods, beverages, and pharmaceuticals. [Pg.250]

Until the end of World War II, coal tar was the main source of these aromatic chemicals. However, the enormously increased demands by the rapidly expanding plastics and synthetic-fiber industries have greatly outstripped the potential supply from coal carbonization. This situation was exacerbated by the cessation of the manufacture in Europe of town gas from coal in the eady 1970s, a process carried out preponderantly in the continuous vertical retorts (CVRs), which has led to production from petroleum. Over 90% of the world production of aromatic chemicals in the 1990s is derived from the petrochemical industry, whereas coal tar is chiefly a source of anticorrosion coatings, wood preservatives, feedstocks for carbon-black manufacture, and binders for road surfacings and electrodes. [Pg.335]


See other pages where Synthetic fibers processing is mentioned: [Pg.4876]    [Pg.4892]    [Pg.4981]    [Pg.5140]    [Pg.5432]    [Pg.5451]    [Pg.5886]    [Pg.199]    [Pg.4876]    [Pg.4892]    [Pg.4981]    [Pg.5140]    [Pg.5432]    [Pg.5451]    [Pg.5886]    [Pg.199]    [Pg.363]    [Pg.264]    [Pg.264]    [Pg.265]    [Pg.266]    [Pg.268]    [Pg.268]    [Pg.268]    [Pg.331]    [Pg.344]    [Pg.352]    [Pg.118]    [Pg.148]    [Pg.333]    [Pg.38]    [Pg.145]    [Pg.146]    [Pg.147]    [Pg.149]    [Pg.149]    [Pg.219]    [Pg.140]    [Pg.186]    [Pg.125]   
See also in sourсe #XX -- [ Pg.380 ]

See also in sourсe #XX -- [ Pg.394 ]




SEARCH



Fiber processing

Synthetic fibers

Synthetic process

© 2024 chempedia.info