Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SYNTHESIS 4-formyl

Aldehyde Synthesis. Formylation would be expected to take place when formyl chloride or formic anhydride reacts with an aromatic compound ia the presence of aluminum chloride or other Friedel-Crafts catalysts. However, the acid chloride and anhydride of formic acid are both too unstable to be of preparative iaterest. [Pg.559]

Olah and co-workers reported the synthesis of 2,2,5,5-tetranitronorbornane (127) from 2,5-norbornadiene (122). In this synthesis formylation of (122) with formic acid yields the diformate ester (123), which on treatment with chrominm trioxide in acetone yields 2,5-norbomadione (124). Formation of the dioxime (125) from 2,5-norbornadione (124) is followed by direct oxidation to 2,5-dinitronorbomane (126) with peroxytriflnoroacetic acid generated in situ from the reaction of 90 % hydrogen peroxide with TFAA. Oxidative nitration of 2,5-dinitronorbornane (126) with sodium nitrite and potassium ferricyanide in alkaline solution generates 2,2,5,5-tetranitronorbornane (127) in excellent yield. [Pg.83]

The structure of this aldehyde was proved by H. Quiniou through an independent synthesis—formylation of the diaryltrithiapentalene by dimethylform amide and phosphorus oxychloride (see Section III,F, 1). [Pg.188]

Since (A) does not contain any other functional group in addition to the formyl group, one may predict that suitable reaction conditions could be found for all conversions into (A). Many other alternative target molecules can, of course, be formulated. The reduction of (H), for example, may require introduction of a protecting group, e.g. acetal formation. The industrial synthesis of (A) is based upon the oxidation of (E) since 3-methylbutanol (isoamyl alcohol) is a cheap distillation product from alcoholic fermentation ( fusel oils ). The second step of our simple antithetic analysis — systematic disconnection — will now be exemplified with all target molecules of the scheme above. For the sake of brevity we shall omit the syn-thons and indicate only the reagents and reaction conditions. [Pg.198]

A mild procedure which does not involve strong adds, has to be used in the synthesis of pure isomers of unsymmetrically substituted porphyrins from dipyrromethanes. The best procedure having been applied, e.g. in unequivocal syntheses of uroporphyrins II, III, and IV (see p. 251f.), is the condensation of 5,5 -diformyldipyrromethanes with 5,5 -unsubstituted dipyrromethanes in a very dilute solution of hydriodic add in acetic acid (A.H. Jackson, 1973). The electron-withdrawing formyl groups disfavor protonation of the pyrrole and therefore isomerization. The porphodimethene that is formed during short reaction times isomerizes only very slowly, since the pyrrole units are part of a dipyrromethene chromophore (see below). Furthermore, it can be oxidized immediately after its synthesis to give stable porphyrins. [Pg.255]

In a more elaborate and specific synthesis, the terpenoid indole skeleton found in haplaindole G, which is isolated from a blue-green alga, was constructed by addition of a nucleophilic formyl equivalent to enone 6.5A. Cyelization and aromatization to the indole 6.6B followed Hg -catalysed unmasking of the aldehyde group[6]. [Pg.50]

Directed thallation has been useful for synthesis of some 4- and 7-substituted indoles. Electrophilic thallation directed by 3-substituents is a potential route to 4-substituled indoles. 3-Formyl[7], 3-acetyi[8] and 3-ethoxycarbonyl[7] groups can all promote 4-thallation. 1-Acetylindoline is the preferred starting... [Pg.139]

The Gattermann-Koch synthesis is suitable for the preparation of simple aromatic aldehydes from ben2ene and its substituted derivatives, as well as from polycychc aromatics. The para isomers are produced preferentially. Aromatics with meta-directing substituents cannot be formylated (108). [Pg.559]

Aromatic and heterocycHc compounds are formylated by reaction with dialkyl- or alkylarylformamides in the presence of phosphoms oxychloride or phosgene (Vilsmeier aldehyde synthesis) (125). The Vilsmeier reaction is a Friedel-Crafts type formylation (126), since the intermediate cation formed by the interaction of phosphoms oxychloride with formamide is a typical electrophilic reagent. Ionic addition compounds of formamide with phosgene or phosphoms oxychloride are also known (127). [Pg.559]

The poly(vinyl alcohol) made for commercial acetalization processes is atactic and a mixture of cis- and /n j -l,3-dioxane stereoisomers is formed during acetalization. The precise cis/trans ratio depends strongly on process kinetics (16,17) and small quantities of other system components (23). During formylation of poly(vinyl alcohol), for example, i j -acetalization is more rapid than /ra/ j -acetalization (24). In addition, the rate of hydrolysis of the trans-2iQ. -A is faster than for the <7 -acetal (25). Because hydrolysis competes with acetalization during acetal synthesis, a high cis/trans ratio is favored. The stereochemistry of PVF and PVB resins has been studied by proton and carbon nmr spectroscopy (26—29). [Pg.450]

Formylation of folate (3) or hydrolysis of 5,10 — CH+ — folate (9) gives (6R,3)-5-formyltetrahydrofohc acid (6) (5-HCO-H folate) (55). On the other hand, (63)-5-HCO-H4 folate is obtained by selective crystaUi2ation in the form of its calcium salt from the diastereomeric mixture of (63, R)-5-HC0-H4 folate (56). 10-Formyltetrahydrofohc acid (7) is a coen2yme in purine synthesis which is synthesi2ed by hydrolysis of 5,10 — CH+ — folate (9) or by hydrogenation of lO-CHO-folate (57). [Pg.40]

The important synthesis of pyrazoles and pyrazolines from aldazines and ketazines belongs to this subsection. Formic acid has often been used to carry out the cyclization (66AHQ6)347) and N-formyl-A -pyrazolines are obtained. The proposed mechanism (70BSF4119) involves the electrocyclic ring closure of the intermediate (587) to the pyrazoline (588 R = H) which subsequently partially isomerizes to the more stable trans isomer (589 R = H) (Section 4.04.2.2.2(vi)). Both isomers are formylated in the final step (R = CHO). [Pg.276]

Vilsraeier-Haak formylation of 5-amino-3-phenylisoxazole (86) gave the aldehyde (87), which is a useful intermediate for the synthesis of isoxazolopyridines and isoxazolopyrimidines (77H(7)5l). [Pg.26]

The synthesis of this series involved the reaction of disubstituted or benzo fused 6-keto(formyl)-2-cyclohexenones with hydroxylamine (Scheme 176), Base degradation gave a-cyanoketones which can be further degraded to diacids (67AHC(8)277, 80IJC(B)406). [Pg.119]

Acridine, 9,10-dihydro-9,9-dimethyl-as antidepressant, 1, 169 Acridine, 9-formyl-synthesis, 2, 507 Acridine, 3-hydroxy-formylation, 2, 322 Acridine, 9-hydroxy-N-oxide... [Pg.509]

Acrylic acid, -(3-benzo[f>]thienyl)-a -mercapto-reaction with iodine, 4, 764 Acrylic acid, o -cyano-y3-(2-thienyl)-ring opening, 4, 807 Acrylic acid, -formyl-in pyridazinone synthesis, 3, 46 Acrylic acid, furyl-rotamers, 4, 545 synthesis, 4, 658 Acrylic acid, 2-hydroxybenzoyl-chroman-4-one synthesis from, 3, 850 Acrylic acid, 5-(l-propynyl)-2-thienyl-methyl ester occurrence, 4, 909 Acrylonitrile... [Pg.511]

H- 1-Benzazepine, lV-benzyl-2,3,4,5-tetrahydro-Vilsmeier formylation, 7, 527 IH-l-Benzazepine, 2,3-dihydro-synthesis, 7, 541 IH-l-Benzazepine, 2,5-dihydro-synthesis, 7, 540... [Pg.534]

Dibenzo[6,/][l,4]selenazocine, N-formyl-6,11-dihydro-synthesis, 6, 34l Dibenzoselenophene, 2-amino-diazotization, 4, 951 Dibenzoselenophene, 2-nitro-reduction, 4, 951 Dibenzoselenophene, 3-nitro-5-oxide... [Pg.602]

Folic acid, 4-amino-4-deoxy-10-methyl-, 1, 164 3, 325 as anticancer drug, 1, 263 biological activity, 3, 325 Folic acid, 4-amino-10-methyl-toxicity, 1, 141 Folic acid, 7,8-dihydro-biosynthesis, 3, 320 synthesis, 1, 161, 3, 307 Folic acid, 4-dimethylamino-hydrolysis, 3, 294 Folic acid, 5-formiminotetrahydro-biological activity, 3, 325 Folic acid, 5-formyl-5,6,7,8-tetrahydro-biological activity, 3, 325 chirality, 3, 281 occurrence, 3, 325 Folic acid, 10-forfnyltetrahydro-biological activity, 3, 325 Folic acid, 5,10-methenyl-5,6,7,8-tetrahydro-biological activity, 3, 325 chirality, 3, 281 Folic acid, 5-methyl-chirality, 3, 281 Folic acid, 9-methyl-toxicity, 1, 141... [Pg.628]


See other pages where SYNTHESIS 4-formyl is mentioned: [Pg.407]    [Pg.461]    [Pg.276]    [Pg.200]    [Pg.404]    [Pg.510]    [Pg.125]    [Pg.325]    [Pg.113]    [Pg.516]    [Pg.533]    [Pg.548]    [Pg.552]    [Pg.573]    [Pg.574]    [Pg.580]    [Pg.581]    [Pg.584]    [Pg.587]    [Pg.611]    [Pg.623]    [Pg.623]    [Pg.628]    [Pg.628]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Aldehydes (s. a. Formyl ketones, synthesis

Aldehydes (s. a. Formyl ketones, synthesis with

Aldehydes (s. a. Formyl synthesis with addition

Aldehydes aromatic, synthesis by formylation

Formyl chloride synthesis

Formyl complexes synthesis

Formyl iodide synthesis

Pyrazole 3-formyl-, ring synthesis

Ring synthesis 3-formyl

Synthesis of Aromatic Aldehydes (Formylation Reactions)

Synthesis of Transition Metal Formyl Complexes

© 2024 chempedia.info