Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis course

Therefore, it is conceivable that the micropore and macropore are interparticle pores, while the mesopore presumably is the intra-particle pore. During the course of calcination, the connection of interparticle was destroyed and this finally resulted in the vanishing of macropore. Because the mesopore was the intraparticle pores, it had relative fine thermal stability though the pore size was enlarged in the calcination. The reasons may be attributed to the steric dispersant effect of non-ionic surfactant PEG [12]. In the synthesis course, PEG gave steric hindrance to the assembling of mesophase and improved the pore structure. [Pg.246]

This paper describes a new synthesis strategy of preparing thermally stable mesostructured transition metal oxides, namely, two-step synthesis (TSS). Basically, the synthesis course involves two steps (1) formation of a mesostructured transition metal oxide solid mediated by surfactant in a basic aqueous solution and (2) treatment of the solid product in an acidic organic solvent containing the respective precursor from which the solid product was produced. The final material synthesized according to such a method is thermally stable and structurally mesoporous with high surface area and uniform pores arranged disorderedly. [Pg.151]

As it is known [2], the macromolecular coil, which is the main structural unit at polymers synthesis in solution, represents a fractal and its structure (coil elements distribution in space) can be described by the fractal dimension Df. Proceeding from this, the authors [1] used the fractal analysis methods for the description of T effect on PHE synthesis course and its main characteristics. [Pg.198]

This then is the disconnection corresponding to the reaction. It is the thinking device we use to help us work out a synthesis of t-butyl alcohol. We could of course have broken any other bond in the target molecule such as ... [Pg.4]

Since (A) does not contain any other functional group in addition to the formyl group, one may predict that suitable reaction conditions could be found for all conversions into (A). Many other alternative target molecules can, of course, be formulated. The reduction of (H), for example, may require introduction of a protecting group, e.g. acetal formation. The industrial synthesis of (A) is based upon the oxidation of (E) since 3-methylbutanol (isoamyl alcohol) is a cheap distillation product from alcoholic fermentation ( fusel oils ). The second step of our simple antithetic analysis — systematic disconnection — will now be exemplified with all target molecules of the scheme above. For the sake of brevity we shall omit the syn-thons and indicate only the reagents and reaction conditions. [Pg.198]

The amino add analysis of all peptide chains on the resins indicated a ratio of Pro Val 6.6 6.0 (calcd. 6 6). The peptides were then cleaved from the resin with 30% HBr in acetic acid and chromatogra phed on sephadex LH-20 in 0.001 M HCl. 335 mg dodecapeptide was isolated. Hydrolysis followed by quantitative amino acid analysis gave a ratio of Pro Val - 6.0 5.6 (calcd. 6 6). Cycll2ation in DMF with Woodward s reagent K (see scheme below) yielded after purification 138 mg of needles of the desired cyc-lododecapeptide with one equiv of acetic add. The compound yielded a yellow adduct with potassium picrate, and here an analytically more acceptable ratio Pro Val of 1.03 1.00 (calcd. 1 1) was found. The mass spectrum contained a molecular ion peak. No other spectral measurements (lack of ORD, NMR) have been reported. For a thirty-six step synthesis in which each step may cause side-reaaions the characterization of the final product should, of course, be more elaborate. [Pg.236]

Synthesis of large heterocycles usually involves condensation reactions of two difunctional molecules. Such molecules tend to polymerize. So far two special techniques have been described above to avoid this important side-reaaion , namely high dilution and use of templates. The general procedure to avoid polymerizations in reactions between difunctional molecules is, of course, the application of protecting groups as described in sections 4.1.2 and 2.6. [Pg.248]

Oligonucleotide synthesis involves specialized blocking and coupling reactions the chemistry of which is beyond the scope of a typical introductory course The in terested reader is referred to http //WWW bi umist ac uk/ users/dberrisford/1 MBL/ nucleicacidB html... [Pg.1164]

The sequence of each different peptide or protein is important for understanding the activity of peptides and proteins and for enabling their independent synthesis, since the natural ones may be difficult to obtain in small quantities. To obtain the sequence, the numbers of each type of amino acid are determined by breaking down the protein into its individual amino acids using concentrated acid (hydrolysis). For example, hydrolysis of the tetrapeptide shown in Figure 45.3 would give one unit of glycine, two units of alanine, and one unit of phenylalanine. Of course, information as to which amino acid was linked to which others is lost. [Pg.331]

Menthol can also be synthesized from optically active terpenoids such as (+)-citroneUal, (-)- P-pheUandrene, and (+)-3-carene. The synthesis from (+)-3-carene has already been discussed in the section on hydrocarbons. Such methods must avoid any racemization during the course of a usually multiple-step synthesis. One disadvantage of such methods is that the other menthol diastereoisomers must be equilibrated and recycled. [Pg.422]

Chelation itself is sometimes useful in directing the course of synthesis. This is called the template effect (37). The presence of a suitable metal ion facihtates the preparation of the crown ethers, porphyrins, and similar heteroatom macrocycHc compounds. Coordination of the heteroatoms about the metal orients the end groups of the reactants for ring closure. The product is the chelate from which the metal may be removed by a suitable method. In other catalytic effects, reactive centers may be brought into close proximity, charge or bond strain effects may be created, or electron transfers may be made possible. [Pg.393]

Synthetic polymers have become extremely important as materials over the past 50 years and have replaced other materials because they possess high strength-to-weight ratios, easy processabiUty, and other desirable features. Used in appHcations previously dominated by metals, ceramics, and natural fibers, polymers make up much of the sales in the automotive, durables, and clothing markets. In these appHcations, polymers possess desired attributes, often at a much lower cost than the materials they replace. The emphasis in research has shifted from developing new synthetic macromolecules toward preparation of cost-effective multicomponent systems (ie, copolymers, polymer blends, and composites) rather than preparation of new and frequendy more expensive homopolymers. These multicomponent systems can be "tuned" to achieve the desired properties (within limits, of course) much easier than through the total synthesis of new macromolecules. [Pg.176]

There are some recent examples of this type of synthesis of pyridazines, but this approach is more valuable for cinnolines. Alkyl and aryl ketazines can be transformed with lithium diisopropylamide into their dianions, which rearrange to tetrahydropyridazines, pyrroles or pyrazoles, depending on the nature of the ketazlne. It is postulated that the reaction course is mainly dependent on the electron density on the carbon termini bearing anionic charges (Scheme 65) (78JOC3370). [Pg.42]

The fusion of a benzene ring to pyrazine results in a considerable increase in the resistance to reduction and it is usually difficult to reduce quinoxalines beyond the tetrahydroquinoxa-line state (91). Two possible dihydroquinoxalines, viz. the 1,2- (92) and the 1,4- (93), are known, and 1,4-dihydroquinoxaline appears to be appreciably more stable than 1,4-dihydropyrazine (63JOC2488). Electrochemical reduction appears to follow a course anzdogous to the reduction of pyrazine, giving the 1,4-dihydro derivative which isomerizes to the 1,2- or 3,4-dihydroquinoxaline before subsequent reduction to 1,2,3,4-tetra-hydroquinoxaline (91). Quinoxaline itself is reduced directly to (91) with LiAlH4 and direct synthesis of (91) is also possible. Tetrahydroquinoxalines in which the benzenoid ring is reduced are well known but these are usually prepared from cyclohexane derivatives (Scheme 30). [Pg.178]

Many of these reactions occur in the course of synthesis of fully or partly unsaturated products after initial ring closure, giving rise to more unsaturated systems, e.g. in the pyrido[2,3-pipemidic acids (Section 2.15.4.1) and their derivatives, e.g. (16a) -> (17) (74JAP(K)7444000). Examples are also found in the pyrido[3,2-[Pg.205]


See other pages where Synthesis course is mentioned: [Pg.210]    [Pg.225]    [Pg.12]    [Pg.331]    [Pg.526]    [Pg.533]    [Pg.833]    [Pg.855]    [Pg.1236]    [Pg.81]    [Pg.359]    [Pg.341]    [Pg.79]    [Pg.210]    [Pg.225]    [Pg.12]    [Pg.331]    [Pg.526]    [Pg.533]    [Pg.833]    [Pg.855]    [Pg.1236]    [Pg.81]    [Pg.359]    [Pg.341]    [Pg.79]    [Pg.136]    [Pg.728]    [Pg.550]    [Pg.729]    [Pg.240]    [Pg.50]    [Pg.193]    [Pg.215]    [Pg.52]    [Pg.53]    [Pg.122]    [Pg.119]    [Pg.260]    [Pg.520]    [Pg.442]    [Pg.48]    [Pg.115]    [Pg.345]    [Pg.346]    [Pg.117]    [Pg.180]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



© 2024 chempedia.info