Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant temperature effects

For nonionic amphiphiles, the effects of temperature on the phase behavior are large and the effects of inorganic electrolytes are very small. However, for ionic surfactants temperature effects are usually small, but effects of inorganic electrolytes are large. Most common electrolytes (eg, NaCl)... [Pg.150]

Solutions to the above problea are required if efficient open tubular colunns are to be prepared. The energy of the saooth glass surface can Sse Increased by roughening or chemical Modification, or the surface tension of the stationary phase can be lowered by the addition of a surfactant. Roughening and/or cheMical modification etre the most widely used techniques for column preparation the addition of a surfactant, although effective, modifies the separation properties of the stationary phase and may also limit the thermal sted>ility of columns prepared with high temperature stable phases. [Pg.593]

Blends of sodium hypochlorite with 15% HC1 and with 12% HCl/3% HF have been used to stimulate aqueous fluid injection wells(143). Waterflood injection wells have also been stimulated by injecting linear alcohol propoxyethoxysulfate salts in the absence of any acid (144). The oil near the well bore is mobilized thus increasing the relative permeability of the rock to water (145). Temperature effects on interfacial tension and on surfactant solubility can be a critical factor in surfactant selection for this application (146). [Pg.23]

R. Aveyard, B.P. Binks, T.A. Lawless, and J. Mead Interfacial Tension Minima in Oil -I- Water - - Surfactant Systems. Effects of Salt and Temperature in Systems Containing Nonionic Surfactants. J. Chem. Soc. Faraday Trans. 1 81, 2155 (1985). R. Aveyard and T.A. Lawless Interfacial Tension Minima in Oil-Water-Surfactant Systems. Systems Containing Pure Nonionic Surfactants, Alkanes, and Inorganic Salts. J. Chem. Soc. Faraday Trans. 1 82, 2951 (1986). [Pg.46]

Studies on non-ionic surfactants as effective drag-reducing additives have been submitted by Zakin (1972). He studied various effects on three non-ionic surfactants formed from straight-chain alcohols and ethyleneoxide. These surfactants have an upper and a lower temperature limit for solubility in water and prove effective drag reducers near their upper critical solubility temperature or clouding point. The clouding point is the point at which a solution of a non-ionic agent in water becomes turbid as the temperature is raised. [Pg.123]

Nonionic surfactants tend to show the opposite temperature effect As the temperature is raised, a point may be reached at which large aggregates precipitate out into a distinct phase. The temperature at which this happens is referred to as the cloud point. It is usually less sharp than the Krafft temperature.2 The phenomenon that nonionic surfactants become less soluble at elevated temperature will be important when we discuss the phase behavior of emulsions. [Pg.252]

Caution should be exercised when considering temperature effects on solubilization by micelles, since the aqueous solubility of the solute and thus its micelle/water partition coefLcient can also change in response to temperature changes. For example, it has been reported that although tt solubility of benzoic acid in a series of polyoxyethylene nonionic surfactants increases with temperature, the micelle/water partition coefLci rt, shows a minimum at 2C, presumably due to the increase in the aqueous solubility of benzoic acid (Humphreys and Rhodes, 1968). The increasr in Km with increasing temperature was attributed to an increase in micellar size, as the cloud point temperature of the surfactant is approached (Humphreys and Rhodes, 1968). [Pg.276]

Surfactants are employed in nanoparticle suspensions. Chen et al. (2002) evaluated the pre paration of amorphous nanoparticle suspensions containing cyclosporine A using the evaporative precipitation into aqueous solution (ERAS) system. The effect of particle size was studied varying the drug surfactant ratios, type of surfactants, temperature, drug load, and solvent. Acceptable particle sizes suitable for both oral and parenteral administration were also studied. Additional articles in the nanoparticle delivery of poorly water-soluble drugs include Kipp (2004), Perkins et al. (2000), Young et al. (2000), and Tyner et al. (2004). [Pg.294]

K. Shinoda and H. Takeda, The effect of added salts in water on the hydrophile-lipophile balance of nonionic surfactants the effect of added salts on the phase inversion temperature of emulsions, J. Colloid Interface Sci. 32 (1970) 642-646. [Pg.272]

The objective of the present work was to study the synthesis of monolaurin by direct lipase-catalyzed esterification between glycerol and lauric acid without any solvent or surfactant. The effects of lauric acid/ glycerol molar ratio, enzyme concentration, and temperature were studied using an experimental design. The reuse of the commercial immobilized lipase, to reduce the process cost, was also investigated. [Pg.434]

The HLB system used above does not take into consideration the temperature effects. Upon heating, an O/W emulsion prepared with nonionic surfactants inverts to a W/O emulsion because the hydrogen bondings in the polyoxyethylene groups are broken, and the HLB value of the surfactant becomes smaller. The higher the... [Pg.234]

The Span 80 with an HLB (hydrophilic-lipophilic balance number) of 4,3, which is an oil soluble liquid, was used as surfactant. The effect of the continuous medium was investigated by employing 1,1,2,2-tetrachloroethane, toluene, or decane, which have various degrees of hydrophobicity. The amounts of the components used are listed in Table 3. At room temperature (20 °C), concen-... [Pg.24]

Diffusion studies were made using an Isopar M/Heavy Aromatic Naptha (IM/HAN) 9 1 oil mixture (Exxon). Isopar M and HAN are refined paraffinic and aromatic oils, respectively. Figure 3 shows equilibrium salinity scans measured in the laboratory for equal-volume mixtures of the surfactant solution and oil. Since room temperature varied somewhat, the effect of temperature on phase behavior was determined. As Figure 3 shows, there is a small temperature effect, especially at the lower salinities. However, it is not large enough to have influenced the basic results of the contacting experiments. Optimum salinity, where equal volumes of oil and brine are contained in the middle phase, is approximately 1.4 gm/dl. [Pg.197]

Regarding the surfactant type and rock type, nonionic surfactants have much higher adsorption on a sandstone surface than anionic surfactants (Liu, 2007). However, Liu s initial experiments indicated that the adsorption of nonionic surfactant on calcite was much lower than that of anionic surfactant without the presence of NaaCOs and was of the same order of magnitude as that of anionic surfactant with the presence of Na2C03. Thus, nonionic surfactants might be candidates for use in carbonate formations from the adsorption point of view. The role of salinity is much less important, but the temperature effect is much more important for nonionics than for anionics (Salager et al 1979a). More factors that affect adsorption were discussed by Somasundaran and Hanna (1977). [Pg.329]


See other pages where Surfactant temperature effects is mentioned: [Pg.33]    [Pg.33]    [Pg.273]    [Pg.377]    [Pg.275]    [Pg.217]    [Pg.69]    [Pg.191]    [Pg.785]    [Pg.1827]    [Pg.747]    [Pg.427]    [Pg.11]    [Pg.117]    [Pg.161]    [Pg.333]    [Pg.369]   


SEARCH



Anionic surfactant precipitation, effect temperature

Surfactant effectiveness

Surfactant market Temperature effect

Surfactants effect of temperature

Surfactants, effects

Temperature effects oxyethylene surfactants

Temperature surfactants

© 2024 chempedia.info