Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants osmotic pressure

The first observation of depletion flocculation by surfactant micelles was reported by Aronson [3]. Bibette et al. [4] have studied the behavior of silicone-in-water emulsions stabilized by sodium dodecyl sulfate (SDS). They have exploited the attractive depletion interaction to size fractionate a crude polydisperse emulsion [5]. Because the surfactant volume fraction necessary to induce flocculation is always lower than 5%, the micelle osmotic pressure can be taken to be the ideal-gas value ... [Pg.108]

At least two different techniques are available to compress an emulsion at a given osmotic pressure H. One technique consists of introducing the emulsion into a semipermeable dialysis bag and to immerse it into a large reservoir filled with a stressing polymer solution. This latter sets the osmotic pressure H. The permeability of the dialysis membrane is such that only solvent molecules from the continuous phase and surfactant are exchanged across the membrane until the osmotic pressure in the emulsion becomes equal to that of the reservoir. The dialysis bag is then removed and the droplet volume fraction at equilibrium is measured. [Pg.128]

We also describe the spreading of a thin surfactant laden aqueous film on a hydrophilic solid, i.e., one in which the dynamic contact angle is small. In such a case, the osmotic pressure gradient generated by the nonuniform distribution of surfactant micelles in the liquid film can drive fhe spreading process. The mofivation for this study comes from the need to understand the detergent action involved in the removal of an oily soil from a soiled surface. This paper presents an overview of our recent work. [Pg.119]

Bibette has used this method to study the effect of osmotic pressure on the stability of thin films in concentrated o/w emulsions [96], by means of an osmotic stress technique. The emulsion is contained in a dialysis bag, which is immersed in an aqueous solution of surfactant and dextran, a water-soluble polymer. The bag is permeable to water and surfactant, but impermeable to oil and polymer. The presence of the polymer causes water to be drawn out of the emulsion, increasing the phase volume ratio and the deformation of the dispersed droplets (Fig. 10). [Pg.182]

The effect of surfactant concentration on critical osmotic pressure was also studied [97], Below a critical surfactant concentration, emulsions are always unstable due to incomplete coverage of the oil-water interfaces. Above this, Jt increases with increasing surfactant concentration until the critical micelle concentration (CMC) is reached, above which it remains more or less constant. [Pg.183]

The contribution of double-layer forces to the osmotic pressure of HIPEs was also investigated [98], These forces arise from the repulsion between adjacent droplets in o/w HIPEs stabilised by ionic surfactants. It was observed that double-layer repulsive forces significantly affected jt for systems of small droplet radius, high volume fraction and low ionic strength of the aqueous continuous phase. The discrepancies between osmotic pressure values observed by Bibette [97] and those calculated by Princen [26] were tentatively attributed to this effect. [Pg.183]

We present a review of theoretical and experimental results on the swelling behavior and collapse transition in polymer gels obtained by our group at Moscow State University. The main attention is paid to polyelectrolyte networks where the most important factor is additional osmotic pressure created by mobile counter ions. The influence of other factors such as condensation of counter ions, external mechanical force, the mixed nature of low-molecular solvents, interaction of network chains with linear macromolecules and surfactants etc. is also taken into account Experimental results demonstrate a good correlation with theoretical analysis. [Pg.123]

When Co grows, the network volume slightly decreases and the concentration of surfactant q within the network increases. When cjj, exceeds a critical concentration of micelle formation (at this point cq = c, see Figs.14,15), the network collapses because the surfactant molecules aggregated in micelles cease to impose osmotic pressure which causes additional expansion of the network. At relatively small values of the ratio Vf/V, the collapse is continuous (Figs. 14, 15), so that the number of surfactant molecules in micelles increases from zero starting at the concentration c. However, when the ratio Vf/V is sufficiently large, a discrete first-order phase transition takes place. [Pg.148]

Similar dependencies on concentration are observed for the osmotic pressure or the electrical conductance of the solution. If we look at the optical turbidity of the solution the trend is opposite. At low concentration the solution is transparent. When the concentration reaches the CMC many solutions become opaque. In parallel, a property, which is of great practical relevance, changes the capacity to solubilize another hydrophobic substance. At concentrations below the CMC of the surfactant, hydrophobic substances are poorly dissolved. At the CMC they start being soluble in aqueous solution. This capability increases with increasing surfactant concentration. There may be small systematic differences in the concentration at which the specific property abruptly changes and the CMC determined by different methods may be different. However, the general trend and the dependency on external parameters such as temperature or salt concentration is always the same. [Pg.251]

Solutions of highly surface-active materials exhibit unusual physical properties. In dilute solution the surfactant acts as a normal solute (and in the case of ionic surfactants, normal electrolyte behaviour is observed). At fairly well defined concentrations, however, abrupt changes in several physical properties, such as osmotic pressure, turbidity, electrical conductance and surface tension, take place (see Figure 4.13). The rate at which osmotic pressure increases with concentration becomes abnormally low and the rate of increase of turbidity with concentration is much enhanced, which suggests that considerable association is taking place. The conductance of ionic surfactant solutions, however, remains relatively high, which shows that ionic dissociation is still in force. [Pg.84]

Bioaccumulation All classes of surfactant are active surface tension depressants. At the critical micelle concentration (CMC) abrupt changes occur in the characteristic properties of surfactants such that surface and interfacial tensions in an aqueous system are at their minimum while osmotic pressure and surface detergent properties are significantly increased. The CMC for most surfactants is reached around 0.01% (18, 19). These effects have an impact on the potential for bioaccumulation of the pesticide, and in the organisms monitored the presence of Dowanol and nonylphenol increased the accumulation of fenitrothion and aminocarb at least 20-300% respectively, over the accumulation obtained in their absence (20). In effect, these adjuvants... [Pg.354]

A number of experimental techniques by measurements of physical properties (interfacial tension, surface tension, osmotic pressure, conductivity, density change) applicable in aqueous systems suffer frequently from insufficient sensitivity at low CMC values in hydrocarbon solvents. Some surfactants in hydrocarbon solvents do not give an identifiable CMC the conventional properties of the hydrocarbon solvent solutions of surfactant compounds can be interpreted as a continuous aggregation from which the apparent aggregation number can be calculated. Other, quite successful, techniques (light scattering, solubilization, fluorescence indicator) were applied to a number of CMCs, e.g., alkylammonium salts, carboxylates, sulfonates and sodium bis(2-ethylhexyl)succinate (AOT) in hydrocarbon solvents, see Table 3.1 (Eicke, 1980 Kertes, 1977 Kertes and Gutman, 1976 Luisi and Straub, 1984 Preston, 1948). [Pg.69]

It should be pointed out at this juncture that strict thermodynamics treatment of the film-covered surfaces is not possible [18]. The reason is difficulty in delineation of the system. The interface, typically of the order of a 1 -2 nm thick monolayer, contains a certain amount of bound water, which is in dynamic equilibrium with the bulk water in the subphase. In a strict thermodynamic treatment, such an interface must be accounted as an open system in equilibrium with the subphase components, principally water. On the other hand, a useful conceptual framework is to regard the interface as a 2-dimensional (2D) object such as a 2D gas or 2D solution [ 19,20]. Thus, the surface pressure 77 is treated as either a 2D gas pressure or a 2D osmotic pressure. With such a perspective, an analog of either p- V isotherm of a gas or the osmotic pressure-concentration isotherm, 77-c, of a solution is adopted. It is commonly referred to as the surface pressure-area isotherm, 77-A, where A is defined as an average area per molecule on the interface, under the provision that all molecules reside in the interface without desorption into the subphase or vaporization into the air. A more direct analog of 77- c of a bulk solution is 77 - r where r is the mass per unit area, hence is the reciprocal of A, the area per unit mass. The nature of the collapsed state depends on the solubility of the surfactant. For truly insoluble films, the film collapses by forming multilayers in the upper phase. A broad illustrative sketch of a 77-r plot is given in Fig. 1. [Pg.62]

In dilute aqueous solutions, surfactants have normal electrolyte or solute characteristics and are formed at the interface. As the surfactant concentration increases beyond the well-defined concentrations (i.e., critical micelle concentration, c.m.c.), the surfactant molecules become more organized aggregates and form micelles. At the c.m.c., the physicochemical characteristics of the system (osmotic pressure, turbidity, surface tension, and electrical conductivity) are suddenly changed, as shown in Figure 4.19. [Pg.236]

In a first step of the miniemulsion process, small stable droplets in a size range between 30 and 500 nm are formed by shearing a system containing the dispersed phase, the continuous phase, a surfactant, and an osmotic pressure agent. In a second step, these droplets are polymerized without changing their identity. [Pg.77]


See other pages where Surfactants osmotic pressure is mentioned: [Pg.480]    [Pg.153]    [Pg.123]    [Pg.18]    [Pg.51]    [Pg.59]    [Pg.118]    [Pg.136]    [Pg.147]    [Pg.174]    [Pg.188]    [Pg.188]    [Pg.117]    [Pg.118]    [Pg.152]    [Pg.203]    [Pg.236]    [Pg.53]    [Pg.29]    [Pg.155]    [Pg.118]    [Pg.144]    [Pg.165]    [Pg.214]    [Pg.627]    [Pg.158]    [Pg.263]    [Pg.18]    [Pg.100]    [Pg.32]    [Pg.209]    [Pg.319]    [Pg.13]    [Pg.75]    [Pg.86]   
See also in sourсe #XX -- [ Pg.512 ]




SEARCH



Ionic surfactants osmotic pressure

Osmotic pressure

Surfactants pressure

© 2024 chempedia.info