Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant resins

Polytitanoxanes are transparent, heat-resistant and hydrophobic. They can be used in potties and as surfactants resins. [Pg.209]

Uniqema Synperonic Surfactants, Resin Emulsification for Waterborne Coating and Adhesives, Uniqema, Wilmington, DE, 1999. [Pg.84]

Use Textile finishing compounds (antifuming agents, dyestuffs, cationic surfactants), resins, rubber products, insecticides, and certain medicinals. [Pg.673]

Uses Paints flotation paper surfactants resins leather Manuf./Distrib. Sigma... [Pg.1176]

CH3(CH2)4CH CHCH2CH CH(CH2)7CH20H Properties Colorless solid m.w. 266.5 dens. 0.855 iodine no. 137 cloud pt. 15 C Precaution Combustible Uses Paints fiotation paper surfactants resins ieather Manuf./Distrib. Sigma Linoieyi iactate... [Pg.2411]

Chem. Descrip. EG/PEG ester Ionic Nature Nonionic Uses Surfactant resin crystallizer Properties Liq, 100% act. [Pg.649]

Me3CCH2CMe2C H40H. M.p. 8l-83"C, b.p. 286-288°C. Made by alkylation of phenol. Forms oil-soluble resins with methanal (salts used as oil additives) and surfactants (with ethylene oxide). [Pg.286]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Dispersion Resins. Polytetrafluoroethylene dispersions in aqueous medium contain 30—60 wt % polymer particles and some surfactant. The type of surfactant and the particle characteristics depend on the appHcation. These dispersions are appHed to various substrates by spraying, flow coating, dipping, coagulating, or electro depositing. [Pg.354]

Urea.—Forma.IdehydeResins. Cellular urea—formaldehyde resins can be prepared in the following manner an aqueous solution containing surfactant and catalyst is made into a low density, fine-celled foam by dispersing air into it mechanically. A second aqueous solution consisting of partially cured urea—formaldehyde resin is then mixed into the foam by mechanical agitation. The catalyst in the initial foam causes the dispersed resin to cure in the cellular state. The resultant hardened foam is dried at elevated temperatures. Densities as low as 8 kg/m can be obtained by this method (117). [Pg.408]

A variety of additives are used to control the properties of wetting and dispersion of pigments, flow, Hthography, and mb-off of inks. These additives belong to classes of materials such as surfactants, bentonite clays, alkyds, functional resins, polymers, etc. [Pg.249]

The production of alkylphenols exceeds 450,000 t/yr on a worldwide basis. Alkylphenols of greatest commercial importance have alkyl groups ranging in size from one to twelve carbons. The direct use of alkylphenols is limited to a few minor appUcations such as epoxy-curing catalysts and biocides. The vast majority of alkylphenols are used to synthesize derivatives which have appUcations ranging from surfactants to pharmaceuticals. The four principal markets are nonionic surfactants, phenoUc resins, polymer additives, and agrochemicals. [Pg.57]

Nonionic surfactants and phenoUc resins based on alkylphenols are mature markets and only moderate growth in these derivatives is expected. Concerns over the biodegradabiUty and toxicity of these alkylphenol derivatives to aquatic species may limit their use in the future. The use of alkylphenols in the production of both polymer additives and monomers for engineering plastics is expected to show above average growth as plastics continue to replace traditional building materials. [Pg.57]

The major use of 4-cumylphenol is as a chain terminator for polycarbonates. Its use in place of phenol gives a polycarbonate with superior properties (33). Eor a low molecular weight polycarbonate used for injection-molding appHcations, the use of 4-cumylphenol as a chain terminator significantly lowers the volatiHty of the resin. Other uses of 4-cumylphenol include the production of phenoHc resins, some of which have appHcations in the electronics industry (34). Another appHcation of 4-cumylphenol involves its reaction with ethylene oxide to form a specialty surfactant. [Pg.66]

High purity 4-dodecylphenol is used to produce specialty surfactants by its reaction with ethylene oxide. The low color of high purity 4-dodecylphenol is important in this appHcation from a standpoint of aesthetics. 4-Dodecylphenol is also used to produce phenoHc resins which are used in adhesive appHcations and printing inks. 4-Dodecylphenol is also used as an epoxy curing catalyst where the addition of 4-dodecylphenol accelerates curing of the epoxy resin to a hard, nontacky soHd. [Pg.67]

Nonfood Uses. Vegetable oils are utilized in a variety of nonedible applications, but only a few percent of the U.S. soybean oil production is used for such products (see Table 13). Soybean oil is converted into alkyd resins (qv) for protective coatings, plasticizers, dimer acids, surfactants (qv), printing inks, SoyDiesel fuel (methyl esters used to replace petroleum-based diesel fuel) and other products (76). [Pg.302]

Polyoxyethylene Esters. This series of surfactants consists of polyoxyethylene (polyethylene glycol) esters of fatty acids and aUphatic carboxyhc acids related to abietic acid (see Resins, natural). They differ markedly from mono- and diglycerides in properties and uses. [Pg.249]

Many different combinations of surfactant and protective coUoid are used in emulsion polymerizations of vinyl acetate as stabilizers. The properties of the emulsion and the polymeric film depend to a large extent on the identity and quantity of the stabilizers. The choice of stabilizer affects the mean and distribution of particle size which affects the rheology and film formation. The stabilizer system also impacts the stabiUty of the emulsion to mechanical shear, temperature change, and compounding. Characteristics of the coalesced resin affected by the stabilizer include tack, smoothness, opacity, water resistance, and film strength (41,42). [Pg.464]

Internal surfactant antistats ate physically mixed with the plastic resin prior to processing. When the resin is melted, the antistat distributes evenly in the polymer matrix. The antistat usually has some degree of solubiUty in the molten polymer. However, when the polymer is processed (extmded, molded, etc) into its final form and allowed to cool, the antistat migrates to the surface of the finished article due to its limited solubiUty in the solidified resin. The molecule of a surface-active agent is composed of a polar hydrophilic portion and a nonpolar hydrophobic portion. The hydrophilic portion of the surfactant at the surface attracts moisture from the atmosphere it is the moisture that has the static dissipative effect. [Pg.297]


See other pages where Surfactant resins is mentioned: [Pg.44]    [Pg.152]    [Pg.84]    [Pg.712]    [Pg.224]    [Pg.461]    [Pg.44]    [Pg.152]    [Pg.84]    [Pg.712]    [Pg.224]    [Pg.461]    [Pg.22]    [Pg.33]    [Pg.281]    [Pg.99]    [Pg.248]    [Pg.249]    [Pg.512]    [Pg.540]    [Pg.540]    [Pg.308]    [Pg.505]    [Pg.125]    [Pg.376]    [Pg.44]    [Pg.49]    [Pg.288]    [Pg.288]    [Pg.21]    [Pg.74]    [Pg.101]    [Pg.453]    [Pg.454]   
See also in sourсe #XX -- [ Pg.473 ]




SEARCH



Surfactant applications Plastics, rubber resins

© 2024 chempedia.info