Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfaces theoretical description

These theoretical descriptions of the thennal etching reaction between F2 and Si(lOO) have been reviewed in some detail in the context of ah initio methods in surface chemistry [60]. [Pg.2936]

The problem of the theoretical description of biopolymer water adsorption isotherms has drawn the attention of researchers for a long time. In the works [19], [20] a rigorous statistical basis for equations describing the isotherms for the case of homogeneous adsorption surfaces and noninteracting adsorption sites of N different types has been suggested. The general equation is ... [Pg.120]

Because of the complex situation on the surface, satisfactory theoretical description of the ionization process leading to secondary ion formation has not yet been possible. Different ionization mechanisms have been proposed ... [Pg.107]

An important step toward the understanding and theoretical description of microwave conductivity was made between 1989 and 1993, during the doctoral work of G. Schlichthorl, who used silicon wafers in contact with solutions containing different concentrations of ammonium fluoride.9 The analytical formula obtained for potential-dependent, photoin-duced microwave conductivity (PMC) could explain the experimental results. The still puzzling and controversial observation of dammed-up charge carriers in semiconductor surfaces motivated the collaboration with a researcher (L. Elstner) on silicon devices. A sophisticated computation program was used to calculate microwave conductivity from basic transport equations for a Schottky barrier. The experimental curves could be matched and it was confirmed for silicon interfaces that the analytically derived formulas for potential-dependent microwave conductivity were identical with the numerically derived nonsimplified functions within 10%.10... [Pg.441]

The present model takes into account how capillary, friction and gravity forces affect the flow development. The parameters which influence the flow mechanism are evaluated. In the frame of the quasi-one-dimensional model the theoretical description of the phenomena is based on the assumption of uniform parameter distribution over the cross-section of the liquid and vapor flows. With this approximation, the mass, thermal and momentum equations for the average parameters are used. These equations allow one to determine the velocity, pressure and temperature distributions along the capillary axis, the shape of the interface surface for various geometrical and regime parameters, as well as the influence of physical properties of the liquid and vapor, micro-channel size, initial temperature of the cooling liquid, wall heat flux and gravity on the flow and heat transfer characteristics. [Pg.351]

In summary, all the experiments expressly selected to check the theoretical description provided fairly clear evidence in favour of both the basic electronic model proposed for the BMPC photoisomerization (involving a TICT-like state) and the essential characteristics of the intramolecular S and S, potential surfaces as derived from CS INDO Cl calculations. Now, combining the results of the present investigation with those of previous studies [24,25] we are in a position to fix the following points about the mechanism and dynamics of BMPC excited-state relaxation l)photoexcitation (So-Si)of the stable (trans) form results in the formation of the 3-4 cis planar isomer, as well as recovery of the trans one, through a perpendicular CT-like S] minimum of intramolecular origin, 2) a small intramolecular barrier (1.-1.2 kcal mol ) is interposed between the secondary trans and the absolute perp minima, 3) the thermal back 3-4 cis trans isomerization requires travelling over a substantial intramolecular barrier (=18 kcal moM) at the perp conformation, 4) solvent polarity effects come into play primarily around the perp conformation, due to localization of the... [Pg.396]

Besides the experimental data mentioned above, the kinetic dependencies of oxide adsorption of various metals are also of great interest. These dependencies have been evaluated on the basis of the variation of sensitive element (film of zinc oxide) conductivity using tiie sensor method. The deduced dependencies and their experimental verification proved that for small occupation of the film surface by metal atoms the Boltzman statistics can be used to perform calculations concerning conductivity electrons of semiconductors, disregarding the surface charge effect as well as the effect of aggregation of adsorbed atoms in theoretical description of adsorption and ionization of adsorbed metal atoms. Considering the equilibrium vapour method, the study [32] shows that... [Pg.191]

In the Introduction the problem of construction of a theoretical model of the metal surface was briefly discussed. If a model that would permit the theoretical description of the chemisorption complex is to be constructed, one must decide which type of the theoretical description of the metal should be used. Two basic approaches exist in the theory of transition metals (48). The first one is based on the assumption that the d-elec-trons are localized either on atoms or in bonds (which is particularly attractive for the discussion of the surface problems). The other is the itinerant approach, based on the collective model of metals (which was particularly successful in explaining the bulk properties of metals). The choice between these two is not easy. Even in contemporary solid state literature the possibility of d-electron localization is still being discussed (49-51). Examples can be found in the literature that discuss the following problems high cohesion energy of transition metals (52), their crystallographic structure (53), magnetic moments of the constituent atoms in alloys (54), optical and photoemission properties (48, 49), and plasma oscillation losses (55). [Pg.65]

Besides the analytical techniques, the theoretical description of polymer brushes allows a deeper understanding of the complex dynamic behavior of polymers on surfaces and is useful for future developments. Here, Roland Netz gives - also for the non-expert - a very helpful theoretical background on the theoretical approaches for the description of neutral and charged polymer brushes. [Pg.225]

For a theoretical description of the effects of a surface on resonant scattering, see Ref. 120. [Pg.219]

Fortunately, the same limiting conditions that validate the friction approximation can also be used with time-dependent density functional theory to give a theoretical description of rjxx. This expression was originally derived to describe vibrational damping of molecules adsorbed on surfaces [71]. It was later shown to also be applicable to any molecular or external coordinate and at any location on the PES, and thus more generally applicable to non-adiabatic dynamics at surfaces [68,72]. The expression is... [Pg.166]

Certainly the condition in Eq. (74) is valid since there must be no accumulation of solute at the interface. But the condition for equilibrium at the interface in Eq. (75) may not be adequate for the description of many mass transfer processes. It is not, for example, difficult to imagine that in the evaporation of a liquid, the vaporization may take place so rapidly that the concentration of vapor just above the liquid surface is considerably less than the concentration corresponding to the equilibrium vapor pressure. The problem of obtaining a quantitative theoretical description of this process has been attacked by Schrage (S4), who has suggested several molecular theories for describing gas-liquid and gas-solid systems. [Pg.181]

In such a representation of an infinite set of master equations for the distribution functions of the state of the surface and of pairs of surface sites (and so on) will arise. This set of equations cannot be solved analytically. To handle this problem practically, this hierarchy must be truncated at a certain level. In such an approach the numerical part needs only a small amount of computer time compared to direct computer simulations. In spite of very simple theoretical descriptions (for example, mean-field approach for certain aspects) structural aspects of the systems are explicitly taken here into account. This leads to results which are in good agreement with computer simulations. But the stochastic model successfully avoids the main difficulty of computer simulations the tremendous amount of computer time which is needed to obtain good statistics for the results. Therefore more complex systems can be studied in detail which may eventually lead to a better understanding of such systems. [Pg.516]

The periodic structure of crystalline surfaces facilitates theoretical description and allows us to use powerful diffraction methods to analyze them. [Pg.145]


See other pages where Surfaces theoretical description is mentioned: [Pg.312]    [Pg.1299]    [Pg.2391]    [Pg.95]    [Pg.944]    [Pg.308]    [Pg.308]    [Pg.225]    [Pg.139]    [Pg.145]    [Pg.397]    [Pg.391]    [Pg.176]    [Pg.41]    [Pg.303]    [Pg.332]    [Pg.96]    [Pg.102]    [Pg.103]    [Pg.107]    [Pg.249]    [Pg.56]    [Pg.7]    [Pg.44]    [Pg.148]    [Pg.441]    [Pg.477]    [Pg.102]    [Pg.19]    [Pg.146]    [Pg.228]    [Pg.86]    [Pg.2]    [Pg.95]    [Pg.252]    [Pg.692]   


SEARCH



Metal surface theoretical descriptions

Surface description

Surface emission theoretical description

Theoretical Descriptions of the Metal Surface

© 2024 chempedia.info