Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface-selective spectroscopies, interface

Vibrational sum-frequency spectroscopy (VSFS) is a second-order non-linear optical technique that can directly measure the vibrational spectrum of molecules at an interface. Under the dipole approximation, this second-order non-linear optical technique is uniquely suited to the study of surfaces because it is forbidden in media possessing inversion symmetry. At the interface between two centrosymmetric media there is no inversion centre and sum-frequency generation is allowed. Thus the asynunetric nature of the interface allows a selectivity for interfacial properties at a molecular level that is not inherent in other, linear, surface vibrational spectroscopies such as infrared or Raman spectroscopy. VSFS is related to the more common but optically simpler second harmonic generation process in which both beams are of the same fixed frequency and is also surface-specific. [Pg.27]

In order to study interfacial phenomena at a liquid/liquid boundary at a microscopic level, surface-selective or depth-resolved measurements at an interface are absolutely necessary. Among several methods, TIR spectroscopy is a powerful means to obtain an inside look at an interfacial layer in several tens to several hundreds of nanometres. In this study, TIR fluorescence spectroscopy was employed to follow chemical and physical characteristics at liquid/liquid interfaces. Before discussing characteristic features of the structures at liquid/liquid interfaces, the basic theory of TIR of light is reviewed briefly in the following. [Pg.250]

A second lock-in detection method that was employed is polarization modulation, which involves modulating the polarization state of the incident infrared beam, and is again an extension of an approach developed for the study of the gas-solid interface [80]. Polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) relies upon the principles underlying the surface selection rule... [Pg.536]

Vibrational spectroscopy represents two physically different, yet complementary spectroscopic techniques IR and Raman spectroscopy. Although both methods have been utilised for many years, recent advances in electronics, computer technologies and sampling made Fourier transform infrared (FTIR) and Raman (FT-Raman) one of the most powerful and versatile analytical tools. Enhanced sensitivity and surface selectivity allows non-invasive, no-vacuum molecular level analysis of surface and interfaces. Emphasis is placed on recent advances in attenuated total reflectance (ATR), step-scan photoacoustic (SS-PA), Fourier transform infrared (FTIR) and FT-Raman microscopies, as utilised to the analysis of polymeric surfaces and interfaces. A combination of these probes allows detection of molecular level changes responsible for macroscopic changes in three dimensions from various depths. 7 refs. [Pg.67]

From an experimental standpoint, information on the dye binding modes at the semiconductor/dye interface, are conventionally accessed by vibrational spectroscopy [Fourier Transform InfraRed (FT-IR) spectroscopy and Surface-Enhanced Raman Spectroscopy (SERS)] [228-237]. These techniques can provide structural details about the adsorption modes as well as information on the relative orientation of the molecules anchored onto the oxide surface. Photoelectron Spectroscopy (PES) has also been successfully employed to characterize the dye/oxide interface for a series of organic dyes [238-242]. The analysis of the PES spectra yields information on the molecular and electronic structures at the interface, along with basic indications of the dye coverage and of the distance of selected atoms from the... [Pg.175]

Solid state NMR is a relatively recent spectroscopic technique that can be used to uniquely identify and quantitate crystalline phases in bulk materials and at surfaces and interfaces. While NMR resembles X-ray diffraction in this capacity, it has the additional advantage of being element-selective and inherently quantitative. Since the signal observed is a direct reflection of the local environment of the element under smdy, NMR can also provide structural insights on a molecularlevel. Thus, information about coordination numbers, local symmetry, and internuclear bond distances is readily available. This feature is particularly usefrd in the structural analysis of highly disordered, amorphous, and compositionally complex systems, where diffraction techniques and other spectroscopies (IR, Raman, EXAFS) often fail. [Pg.460]

In addition to the surface/interface selectivity, IR-Visible SFG spectroscopy provides a number of attractive features since it is a coherent process (i) Detection efficiency is very high because the angle of emission of SFG light is strictly determined by the momentum conservation of the two incident beams, together with the fact that SFG can be detected by a photomultiplier (PMT) or CCD, which are the most efficient light detectors, because the SFG beam is in the visible region, (ii) The polarization feature that NLO intrinsically provides enables us to obtain information about a conformational and lateral order of adsorbed molecules on a flat surface, which cannot be obtained by traditional vibrational spectroscopy [29-32]. (iii) A pump and SFG probe measurement can be used for an ultra-fast dynamics study with a time-resolution determined by the incident laser pulses [33-37]. (iv) As a photon-in/photon-out method, SFG is applicable to essentially any system as long as one side of the interface is optically transparent. [Pg.73]

Hyper-Raman spectroscopy is not a surface-specific technique while SFG vibrational spectroscopy can selectively probe surfaces and interfaces, although both methods are based on the second-order nonlinear process. The vibrational SFG is a combination process of IR absorption and Raman scattering and, hence, only accessible to IR/Raman-active modes, which appear only in non-centrosymmetric molecules. Conversely, the hyper-Raman process does not require such broken centrosymmetry. Energy diagrams for IR, Raman, hyper-Raman, and vibrational SFG processes are summarized in Figure 5.17. [Pg.94]

The present method is still in its early stage of application. Both ex situ and in situ type measurements are applicable to a variety of mineral/aqueous solution interfaces. For example, the mechanism of selective adsorption of cobaltous ions on manganese minerals can be studied by this method. In addition to the two Mossbauer source nuclides described in the present article, there are a number of other nuclides which can be studied. We have recently started a series of experiments using Gd-151 which is a source nuclide of Eu-151 Mossbauer spectroscopy. Development of theory on surface magnetism, especially one including relaxation is desirable. Such a theory would facilitate the interpretation of the experimental results. [Pg.423]

In our experience, the principal challenges in the application of ATR IR spectroscopy for investigations of functioning solid catalysts are associated with the sensitivity of the measurement and the complexity of the samples. The former is an issue common to most surface spectroscopies. The latter has to do with the simultaneous presence of many species at a catalytic solid-liquid interface these species include dissolved reactants, adsorbed intermediates, spectators, and products. The spectra are a superposition of the spectra of the individual species. The question of whether a species is a spectator or instead involved in the catalytic cycle is not easily answered and represents a challenge for in situ spectroscopy in general. Thus, there is a need for specialized techniques to be used in combination with ATR spectroscopy to enhance sensitivity and introduce selectivity. [Pg.259]


See other pages where Surface-selective spectroscopies, interface is mentioned: [Pg.377]    [Pg.345]    [Pg.96]    [Pg.628]    [Pg.366]    [Pg.291]    [Pg.50]    [Pg.94]    [Pg.164]    [Pg.315]    [Pg.252]    [Pg.788]    [Pg.25]    [Pg.98]    [Pg.288]    [Pg.632]    [Pg.165]    [Pg.259]    [Pg.628]    [Pg.286]    [Pg.251]    [Pg.240]    [Pg.232]    [Pg.1788]    [Pg.364]    [Pg.311]    [Pg.391]    [Pg.415]    [Pg.139]    [Pg.136]    [Pg.378]    [Pg.243]    [Pg.338]    [Pg.17]    [Pg.31]    [Pg.373]   


SEARCH



Interface spectroscopy

Surface interface

Surface selection

Surface selective

Surface spectroscopy

© 2024 chempedia.info