Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface precipitation, sorption

Sorption and Desorption Processes. Sorption is a generalized term that refers to surface-induced removal of the pesticide from solution it is the attraction and accumulation of pesticide at the sod—water or sod—air interface, resulting in molecular layers on the surface of sod particles. Experimentally, sorption is characterized by the loss of pesticide from the sod solution, making it almost impossible to distinguish between sorption in which molecular layers form on sod particle surfaces, precipitation in which either a separate soHd phase forms on soHd surfaces, covalent bonding with the sod particle surface, or absorption into sod particles or organisms. Sorption is generally considered a reversible equdibrium process. [Pg.219]

Ivanovich M, Harmon RS (eds) Clarendon Press, Oxford, p 34-61 Giammar DE, Hering JG (2001) Time scales for sorption-desorption and surface precipitation of uranyl on goethite. Environ Sci Technol 35 3332-3337... [Pg.357]

In surface precipitation cations (or anions) which adsorb to the surface of a mineral may form at high surface coverage a precipitate of the cation (anion) with the constituent ions of the mineral. Fig. 6.9 shows schematically the surface precipitation of a cation M2+ to hydrous ferric oxide. This model, suggested by Farley et al. (1985), allows for a continuum between surface complex formation and bulk solution precipitation of the sorbing ion, i.e., as the cation is complexed at the surface, a new hydroxide surface is formed. In the model cations at the solid (oxide) water interface are treated as surface species, while those not in contact with the solution phase are treated as solid species forming a solid solution (see Appendix 6.2). The formation of a solid solution implies isomorphic substitution. At low sorbate cation concentrations, surface complexation is the dominant mechanism. As the sorbate concentration increases, the surface complex concentration and the mole fraction of the surface precipitate both increase until the surface sites become saturated. Surface precipitation then becomes the dominant "sorption" (= metal ion incorporation) mechanism. As bulk solution precipitation is approached, the mol fraction of the surface precipitate becomes large. [Pg.229]

Fig. 6.10 shows idealized isotherms (at constant pH) for cation binding to an oxide surface. In the case of cation binding, onto a solid hydrous oxide, a metal hydroxide may precipitate and may form at the surface prior to their formation in bulk solution and thus contribute to the total apparent "sorption". The contribution of surface precipitation to the overall sorption increases as the sorbate/sorbent ratio is increased. At very high ratios, surface precipitation may become the dominant "apparent" sorption mechanism. Isotherms showing reversals as shown by e have been observed in studies of phosphate sorption by calcite (Freeman and Rowell, 1981). [Pg.230]

The processes described and their kinetics is of importance in the accumulation of trace metals by calcite in sediments and lakes (Delaney and Boyle, 1987) but also of relevance in the transport and retention of trace metals in calcareous aquifers. Fuller and Davis (1987) investigated the sorption by calcareous aquifer sand they found that after 24 hours the rate of Cd2+ sorption was constant and controlled by the rate of surface precipitation. Clean grains of primary minerals, e.g., quartz and alumino silicates, sorbed less Cd2+ than grains which had surface patches of secondary minerals, e.g., carbonates, iron and manganese oxides. Fig. 6.11 gives data (time sequence) on electron spin resonance spectra of Mn2+ on FeC03(s). [Pg.300]

Relaxation studies have shown that the attachment of an ion to a surface is very fast, but the establishment of equilibrium in wel1-dispersed suspensions of colloidal particles is much slower. Adsorption of cations by hydrous oxides may approach equilibrium within a matter of minutes in some systems (39-40). However, cation and anion sorption processes often exhibit a rapid initial stage of adsorption that is followed by a much slower rate of uptake (24,41-43). Several studies of short-term isotopic exchange of phosphate ions between aqueous solutions and oxide surfaces have demonstrated that the kinetics of phosphate desorption are very slow (43-45). Numerous hypotheses have been suggested for this slow attainment of equilibrium including 1) the formation of binuclear complexes on the surface (44) 2) dynamic particle-particle interactions in which an adsorbing ion enhances contact adhesion between particles (43,45-46) 3) diffusion of ions into adsorbents (47) and 4) surface precipitation (48-50). [Pg.7]

Spectroscopic techniques may provide the least ambiguous methods for verification of actual sorption mechanisms. Zeltner et al. (Chapter 8) have applied FTIR (Fourier Transform Infrared) spectroscopy and microcalorimetric titrations in a study of the adsorption of salicylic acid by goethite these techniques provide new information on the structure of organic acid complexes formed at the goethite-water interface. Ambe et al. (Chapter 19) present the results of an emission Mossbauer spectroscopic study of sorbed Co(II) and Sb(V). Although Mossbauer spectroscopy can only be used for a few chemical elements, the technique provides detailed information about the molecular bonding of sorbed species and may be used to differentiate between adsorption and surface precipitation. [Pg.7]

Measurements of the chemical composition of an aqueous solution phase are interpreted commonly to provide experimental evidence for either adsorption or surface precipitation mechanisms in sorption processes. The conceptual aspects of these measurements vis-a-vis their usefulness in distinguishing adsorption from precipitation phenomena are reviewed critically. It is concluded that the inherently macroscopic, indirect nature of the data produced by such measurements limit their applicability to determine sorption mechanisms in a fundamental way. Surface spectroscopy (optical or magnetic resonance), although not a fully developed experimental technique for aqueous colloidal systems, appears to offer the best hope for a truly molecular-level probe of the interfacial region that can discriminate among the structures that arise there from diverse chemical conditions. [Pg.217]

When the kinetics of a sorption process do appear to separate according to very small and very large time scales, the almost universal inference made is that pure adsorption is reflected by the rapid kinetics (16,21,22,26). The slow kinetics are interpreted either in terms of surface precipitation (20) or diffusion of the adsorbate into the adsorbent (16,24). With respect to metal cation sorption, "rapid kinetics" refers to time scales of minutes (16,26), whereas for anion sorption it refers to time scales up to hours TT, 21). The interpretation of these time scales as characteristic of adsorption rests almost entirely on the premise that surface phenomena involve little in the way of molecular rearrangement and steric hindrance effects (16,21). [Pg.224]

Solubility and kinetics methods for distinguishing adsorption from surface precipitation suffer from the fundamental weakness of being macroscopic approaches that do not involve a direct examination of the solid phase. Information about the composition of an aqueous solution phase is not sufficient to permit a clear inference of a sorption mechanism because the aqueous solution phase does not determine uniquely the nature of its contiguous solid phases, even at equilibrium (49). Perhaps more important is the fact that adsorption and surface precipitation are essentially molecular concepts on which strictly macroscopic approaches can provide no unambiguous data (12, 21). Molecular concepts can be studied only by molecular methods. [Pg.226]

Filer JM, Mojzsis SJ, Arrhenius G (1997) Carbon isotope evidence for early life discussion. Nature 386 665 Emerson D (2000) Microbial oxidation of Ee(II) and Mn(II) at circumneutral pH. In Environmental metal-microbe interactions. Lovley DR (ed) ASM Press, Washington DC, p 31-52 Ewers WE (1983) Chemical factors in the deposition and diagenesis of banded iron-formation. In Iron formations facts and problems. Trendall AF, Morris RC (eds) Elsevier, Amsterdam, p 491-512 Farley KJ, Dzombak DA, Morel FMM (1985) A surface precipitation model for the sorption of cations on metal oxides. J Colloid Interface Sci 106 226-242... [Pg.403]

Charlet, L. Manceau, A.A. (1992a) X-ray absorption spectioscopic study of the sorption of Cr(III) at the oxide/water interface. II. Adsorption, coprecpitation, and surface precipitation on hydrous ferric oxide. J. Colloid Interface Sd. 148 443-458 Charlet, L. Manceau, A.A. (1992) X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface. J. Colloid Interface Sd. 148 425-442 Chatellier, X. Fortin, D. West, M.M. Leppard, G.G. Ferris, F.G. (2001) Effect of the presence of bacterial surfaces during the synthesis of Fe oxides by oxidation of ferrous ions. Fur. J. Mineral. 13 705-714 Cheetham, A.K. Fender, B.E.F. Taylor, R.I. (1971) High temperature neutron diffraction study of Fei. O. J. Phys. C4 2160-2165 Chemical Week (1988) Glidderfs anti rust secret is out." 15 10... [Pg.568]

A surface precipitation model for the sorption of cations on metal oxides. J. Colloid Interface Sci. 106 226-242... [Pg.577]

Feltz, A. Martin, A. (1987) Solid-state reactivity and mechanisms in oxide systems. 11 Inhibition of zinc ferrite formation in zinc oxide - a-iron(lll) oxide mixtures with a large excess of a-iron(lll) oxide. In Schwab, G.M. (ed.) Reactivity of solids. Elsevier, 2 307—313 Fendorf, S. Fendorf, M. (1996) Sorption mechanisms of lanthanum on oxide minerals. Clays Clay Miner. 44 220-227 Fendorf, S.E. Sparks, D.L. (1996) X-ray absorption fine structure spectroscopy. In Methods of Soil Analysis. Part 3 Chemical Methods. Soil Sd. Soc. Am., 377-416 Fendorf, S.E. Eick, M.J. Grossl, P. Sparks, D.L. (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Techn. 31 315-320 Fendorf, S.E. Li,V. Gunter, M.E. (1996) Micromorphologies and stabilities of chromiu-m(III) surface precipitates elucidated by scanning force microscopy. Soil Sci. Soc. Am. J. 60 99-106... [Pg.578]

Fuller et al. (2002) used EXAFS to study the sorption/surface precipitation of U(VI) to hydroxyapatites used in permeable reactive... [Pg.444]

Phosphate is widely used as a chemical stabilization agent for MSW combustion residues in Japan and North America and is under consideration for use in parts of Europe. The application of this technology to MSW ashes generally parallels its application to contaminated soils. Metal phosphates (notably Cd, Cu, Pb and Zn) frequently have wide pH distribution, pH-pE predominance, and redox stability within complex ash pore water systems. Stabilization mechanisms identified in other contaminated systems (e.g., soils), involving a combination of sorption, heterogeneous nucleation, and surface precipitation, or solution-phase precipitation are generally observed in ash systems. [Pg.465]

Farley, K. J., Dzombak, D. A. Morel, F. M. M. 1985. A surface precipitation model for the sorption of cations on metal oxides. Journal of Colloid and Interface Science, 106, 226—242. [Pg.469]


See other pages where Surface precipitation, sorption is mentioned: [Pg.319]    [Pg.163]    [Pg.164]    [Pg.141]    [Pg.4]    [Pg.5]    [Pg.298]    [Pg.402]    [Pg.6]    [Pg.7]    [Pg.220]    [Pg.224]    [Pg.225]    [Pg.343]    [Pg.347]    [Pg.511]    [Pg.332]    [Pg.290]    [Pg.65]    [Pg.435]    [Pg.438]    [Pg.442]    [Pg.444]    [Pg.444]    [Pg.545]    [Pg.547]    [Pg.548]    [Pg.552]    [Pg.554]    [Pg.555]    [Pg.557]   


SEARCH



Precipitation surface

© 2024 chempedia.info