Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface energy aspects probe

Inverse gas chromatography analysis at very high dilution and at finite concentrations of probe injection was carried out on a series of polymers and pigments used in paint formulations. Values of dispersion surface energies, and of acid-base interaction parameters were obtained for the materials, and pair interaction parameters were calculated from the results. The dispersion stability of each pigment/ polymer combination was measured and correlated with the acid-base interaction parameters of the materials, and is shown to justify the availability of fundamental thermodynamic interaction data to optimise performance aspects of protective coatings. 23 refs. [Pg.94]

For non-volatile sample molecules, other ionisation methods must be used, namely desorption/ionisation (DI) and nebulisation ionisation methods. In DI, the unifying aspect is the rapid addition of energy into a condensed-phase sample, with subsequent generation and release of ions into the mass analyser. In El and Cl, the processes of volatilisation and ionisation are distinct and separable in DI, they are intimately associated. In nebulisation ionisation, such as ESP or TSP, an aerosol spray is used at some stage to separate sample molecules and/or ions from the solvent liquid that carries them into the source of the mass spectrometer. Less volatile but thermally stable compounds can be thermally vaporised in the direct inlet probe (DIP) situated close to the ionising molecular beam. This DIP is standard equipment on most instruments an El spectrum results. Techniques that extend the utility of mass spectrometry to the least volatile and more labile organic molecules include FD, EHD, surface ionisation (SIMS, FAB) and matrix-assisted laser desorption (MALD) as the last... [Pg.359]

Recent ab initio calculations have attempted to probe the fundamental source of the reversal of H/D preference in ionic as compared to neutral systems, using water as a test base. A harmonic analysis of the potential energy surface of the water dimer, computed with a 6-31G basis set, indicates that the preference for D in the bridging site can be explained in a manner similar to that described earlier for HF - HF. The frequency of the bending motion of the bridging atom is sensitive to its mass this effect leads to a lower vibrational energy of some 0.2 kcal/mol when the heavier D undergoes this motion. The computations indicated that electron correlation has little effect upon this conclusion, even its quantitative aspects. While the treatment was purely harmonic in nature, other calculations have indicated that anharmonicity effects yield very little distinction between one isotopomer and the next. [Pg.120]

There has been considerable interest on the influence of zeolites on several aspects of the photochemical behaviour of ketones. Turro et al. have carried out further work on the influence of zeolites on the photochemical activity of dibenzyl ketones. In this study pentasil zeolites were used. In other work Turro has reported the use of triplet-triplet energy transfer as a probe of surface diffusion rates. The luminescent properties of some aromatic ketones in the presence of the hydrophobic zeolite Silicalite have been examined and a spectral study of trsmsients formed by the irradiation of aryl ketones in zeolites has been reported. ... [Pg.155]

The application of total internal reflection fluorescence spectroscopy (TIRF) by this laboratory to the study of protein adsorption at solid-liquid interfaces is reviewed. TIRF has been used to determine adsorption isotherms and adsorption rates from single-and multi-component protein solutions. Initial adsorption rates of BSA can be explained qualitatively by the properties of the adsorbing surface. Most recently, a TIRF study using monoclonal antibodies to probe the conformation of adsorbed sperm whale myoglobin (Mb) elucidated two aspects of the Mb adsorption process 1) Mb adsorbs in a non-random manner. 2) Conformational changes of adsorbed Mb, if they occur, are minor and confined to local regions of the molecule. Fluorescence energy transfer and proteolytic enzyme techniques, when coupled with TIRF, can characterize, respectively, the conformation and orientation of adsorbed Mb. [Pg.306]

After the brief introduction to the modem methods of ab initio quantum chemistry, we will discuss specific applications. First of all, we will discuss some general aspects of the adsorption of atoms and molecules on electrochemical surfaces, including a discussion of the two different types of geometrical models that may be used to study surfaces, i. e. clusters and slabs, and how to model the effect of the electrode potential in an ab initio calculation. As a first application, the adsorption of halogens and halides on metal surfaces, a problem very central to interfacial electrochemistry, will be dealt with, followed by a section on the ab initio quantum chemical description of the adsorption of a paradigmatic probe molecule in both interfacial electrochemistry and surface science, namely carbon monoxide. Next we will discuss in detail an issue uniquely specific to electrochemistry, namely the effect of the electric field, i. e. the variable electrode potential, on the adsorption energy and vibrational properties of chemisorbed atoms and molecules. The potential-dependent adsorption of carbon monoxide will be discussed in a separate section, as this is a much studied system both in experimental electrochemistry and ab initio quantum electrochemistry. The interaction of water and water dissociation products with metal surfaces will be the next topic of interest. Finally, as a last... [Pg.53]

AES dilfers from XPS in that the surface is ionized by a finely focused electron beam of 5 30 kV (Fig. 1). The secondary electrons have no specific information content in AES, but the Auger electrons, which are emitted shortly after the secondary electrons, and which involve transitions between different orbitals, are recorded as a function of their kinetic energy. Such Auger electrons are also emitted after ionization by x-rays in XPS and consequently the same Auger transitions lines are also observed in XPS. In XPS, this aspect of the technique is sometimes referred to as XAES (Table 1). Because of a very high background, AES spectra are conveniently represented as differentiated spectra. The peak-to-peak heights (more accurately, peak areas in the nondifferentiated spectrum) are proportional to the number of atoms in the probed sample volume. [Pg.391]


See other pages where Surface energy aspects probe is mentioned: [Pg.187]    [Pg.1215]    [Pg.489]    [Pg.187]    [Pg.1221]    [Pg.169]    [Pg.1625]    [Pg.54]    [Pg.399]    [Pg.273]    [Pg.392]    [Pg.4]    [Pg.59]    [Pg.209]    [Pg.489]    [Pg.85]    [Pg.143]    [Pg.149]    [Pg.225]    [Pg.415]    [Pg.334]    [Pg.53]    [Pg.32]    [Pg.41]    [Pg.158]    [Pg.623]    [Pg.98]    [Pg.350]    [Pg.63]    [Pg.524]    [Pg.223]    [Pg.207]    [Pg.455]    [Pg.23]    [Pg.86]    [Pg.1625]    [Pg.366]    [Pg.3]    [Pg.33]    [Pg.103]    [Pg.581]    [Pg.468]    [Pg.841]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Probe energies

Surface probes

Surface probing

© 2024 chempedia.info