Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface activity liquids

This model leads also to interesting comparison with embrittlement by surface active liquids (Rehbinder effect) or by intergranular segregation. As viscoelastic losses... [Pg.81]

Vapors of surface-active liquids (including the well-known example of the adverse effect of ether vapor on foam stability)... [Pg.130]

Dimeihylamine, C2H7N, (CH3)2NH. Colourless, inflammable liquid with an ammoniacal odour, mp -96" C, b.p. 7°C. Occurs naturally in herring brine. Prepared in the laboratory by treating nitrosodimetbyl-aniline with a hot solution of sodium hydroxide. Dimethylamine is largely used in the manufacture of other chemicals. These include the solvents dimethylacetamide and dimethyl-formamide, the rocket propellant unsym-metrical dimethylhydrazine, surface-active agents, herbicides, fungicides and rubber accelerators. [Pg.260]

When a surface-active agent is present in a liquid droplet, it can adsorb to the surface, lower the surface energy, and cause the liquid contact angle to increase. This phenomenon, known as autophobicity, was postulated by Zisman many years ago [78, 79]. Autophobicity is quite striking in wetting films on clean... [Pg.360]

Proteins, like other macromolecules, can be made into monolayers at the air-water interface either by spreading, adsorption, or specific binding. Proteins, while complex polymers, are interesting because of their inherent surface activity and amphiphilicity. There is an increasing body of literature on proteins at liquid interfaces, and here we only briefly discuss a few highlights. [Pg.542]

Perfluorinated carboxylic acids are corrosive liquids or solids. The acids are completely ionized in water. The acids are of commercial significance because of their unusual acid strength, chemical stabiUty, high surface activity, and salt solubiUty characteristics. The perfluoroaLkyl acids with six carbons or less are hquids the higher analogues are soHds (Table 1). [Pg.310]

High Surface Sodium. Liquid sodium readily wets many soHd surfaces. This property may be used to provide a highly reactive form of sodium without contamination by hydrocarbons. Powdered soHds having a high surface area per unit volume, eg, completely dehydrated activated alumina powder, provide a suitable base for high surface sodium. Other powders, eg, sodium chloride, hydride, monoxide, or carbonate, can also be used. [Pg.162]

T] Use with log mean mole fraction differences based on ends of column, t = rise time. No continuous phase resistance. Stagnant drops are likely if drop is very viscous, quite small, or is coated with surface active agent. A.y uiean dispersed liquid M.T. coefficient. [Pg.613]

The second type is a stable dispersion, or foam. Separation can be extremely difficult in some cases. A pure two-component system of gas and liquid cannot produce dispersions of the second type. Stable foams can oe produced only when an additional substance is adsorbed at the liquid-surface interface. The substance adsorbed may be in true solution but with a chemical tendency to concentrate in the interface such as that of a surface-active agent, or it may be a finely divided sohd which concentrates in the interface because it is only poorly wetted by the liquid. Surfactants and proteins are examples of soluble materials, while dust particles and extraneous dirt including traces of nonmisci-ble liquids can be examples of poorly wetted materials. [Pg.1441]

The prediction of drop sizes in liquid-liquid systems is difficult. Most of the studies have used very pure fluids as two of the immiscible liquids, and in industrial practice there almost always are other chemicals that are surface-active to some degree and make the pre-dic tion of absolute drop sizes veiy difficult. In addition, techniques to measure drop sizes in experimental studies have all types of experimental and interpretation variations and difficulties so that many of the equations and correlations in the literature give contradictoiy results under similar conditions. Experimental difficulties include dispersion and coalescence effects, difficulty of measuring ac tual drop size, the effect of visual or photographic studies on where in the tank you can make these obseiwations, and the difficulty of using probes that measure bubble size or bubble area by hght or other sample transmission techniques which are veiy sensitive to the concentration of the dispersed phase and often are used in veiy dilute solutions. [Pg.1636]

Leaching is the removal of a soluble fraction, in the form of a solution, from an insoluble, permeable sohd phase with which it is associated. The separation usually involves selective dissolution, with or without diffusion, but in the extreme case of simple washing it consists merely of the displacement (with some mixing) of one interstitial liquid by another with which it is miscible. The soluble constituent may be solid or liquid and it may be incorporated within, chemically combined with, adsorbed upon, or held mechanically in the pore structure of the insoluble material. The insoluble sohd may be massive and porous more often it is particulate, and the particles may be openly porous, cellular with selectively permeable cell walls, or surface-activated. [Pg.1673]

Albertsson (Paiiition of Cell Paiiicle.s and Macromolecules, 3d ed., Wiley, New York, 1986) has extensively used particle distribution to fractionate mixtures of biological products. In order to demonstrate the versatility of particle distribution, he has cited the example shown in Table 22-14. The feed mixture consisted of polystyrene particles, red blood cells, starch, and cellulose. Liquid-liquid particle distribution has also been studied by using mineral-matter particles (average diameter = 5.5 Im) extracted from a coal liquid as the solid in a xylene-water system [Prudich and Heniy, Am. Inst. Chem. Eng. J., 24(5), 788 (1978)]. By using surface-active agents in order to enhance the water wettability of the solid particles, recoveries of better than 95 percent of the particles to the water phase were obsei ved. All particles remained in the xylene when no surfactant was added. [Pg.2015]

Surface-active substances (SAS) are the most widespread contaminants of sewage and natural waters. They translate in small dispertion condition liquid and firm polluting substances - chlororganic, mineral oils, pesticides. Therefore, the SAS contents determination in water solutions is now one of actual tasks of analytical chemistry. [Pg.108]

The electrostatic behavior of intrinsically nonconductive substances, such as most pure thermoplastics and saturated hydrocarbons, is generally governed by chemical species regarded as trace contaminants. These are components that are not deliberately added and which may be present at less than detectable concentrations. Since charge separation occurs at interfaces, both the magnitude and polarity of charge transfer can be determined by contaminants that are surface active. This is particularly important for nonconductive liquids, where the electrostatic behavior can be governed by contaminants present at much less than 1 ppm (2-1.3). [Pg.9]

The heat evolution rate per unit mass, the vent capacity per unit area, physical properties (e.g.. latent heat of liquid, specific heat, and vapor/liqnid specific volumes) are constant. It allows for total vapor-liqnid disengagement of fluids that are not natural" surface active foamers. ... [Pg.974]

Probably the chief difficulty which arises is that due to the formation of emulsions between the organic and aqueous phases. This makes separation of the phases difficult and sometimes impossible. It is clearly important to select liquid exchangers having low surface activity and to use conditions which will minimise the formation of stable emulsions [see Section 6.7, consideration (3)]. [Pg.204]


See other pages where Surface activity liquids is mentioned: [Pg.633]    [Pg.638]    [Pg.337]    [Pg.110]    [Pg.276]    [Pg.150]    [Pg.758]    [Pg.633]    [Pg.638]    [Pg.337]    [Pg.110]    [Pg.276]    [Pg.150]    [Pg.758]    [Pg.180]    [Pg.381]    [Pg.33]    [Pg.70]    [Pg.79]    [Pg.102]    [Pg.484]    [Pg.2574]    [Pg.426]    [Pg.541]    [Pg.336]    [Pg.132]    [Pg.679]    [Pg.1140]    [Pg.1426]    [Pg.1766]    [Pg.2014]    [Pg.2015]    [Pg.2297]    [Pg.296]    [Pg.362]    [Pg.10]    [Pg.21]    [Pg.366]    [Pg.62]    [Pg.108]    [Pg.681]    [Pg.363]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Liquid activity

Liquid surface

Liquidous surface

© 2024 chempedia.info