Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supported selective oxidation

The alkyl derivatives of thiazoles can be catalytically oxidized in the vapor phase at 250 to 400°C to afford the corresponding formyl derivatives (21). Molybdenum oxide, V2O5, and tin vanadate are used as catalysts either alone or with a support. The resulting carbonyl compounds can be selectively oxidized to the acids. [Pg.521]

Benzene-Based Catalyst Technology. The catalyst used for the conversion of ben2ene to maleic anhydride consists of supported vanadium oxide [11099-11-9]. The support is an inert oxide such as kieselguhr, alumina [1344-28-17, or sUica, and is of low surface area (142). Supports with higher surface area adversely affect conversion of benzene to maleic anhydride. The conversion of benzene to maleic anhydride is a less complex oxidation than the conversion of butane, so higher catalyst selectivities are obtained. The vanadium oxide on the surface of the support is often modified with molybdenum oxides. There is approximately 70% vanadium oxide and 30% molybdenum oxide [11098-99-0] in the active phase for these fixed-bed catalysts (143). The molybdenum oxide is thought to form either a soUd solution or compound oxide with the vanadium oxide and result in a more active catalyst (142). [Pg.455]

The primary determinant of catalyst surface area is the support surface area, except in the case of certain catalysts where extremely fine dispersions of active material are obtained. As a rule, catalysts intended for catalytic conversions utilizing hydrogen, eg, hydrogenation, hydrodesulfurization, and hydrodenitrogenation, can utilize high surface area supports, whereas those intended for selective oxidation, eg, olefin epoxidation, require low surface area supports to avoid troublesome side reactions. [Pg.194]

Each precious metal or base metal oxide has unique characteristics, and the correct metal or combination of metals must be selected for each exhaust control appHcation. The metal loading of the supported metal oxide catalysts is typically much greater than for nobel metals, because of the lower inherent activity pet exposed atom of catalyst. This higher overall metal loading, however, can make the system more tolerant of catalyst poisons. Some compounds can quickly poison the limited sites available on the noble metal catalysts (19). [Pg.503]

Silica gel supported sodium metaperiodate was used for the selective oxidation of dibenzyl sulphide80. Metaperiodate anion soaked on strongly basic-ion-exchange resins Amberlite IRA-904 or Amberlyst A-26 was found to be able to oxidize sulphides into the corresponding sulphoxides in 82-99% yield81. [Pg.247]

CU/AI2O3, and AU/AI2O3 catalysts and the effects of Ii20 and CeO addition [69]. However, the additives caused a decrease in the N2 selectivity but remarkably improved the catalytic activity, in particular, a decrease in Tso over 200°C in the case of gold. Gold catalysts have a potential for NH3 oxidation at lower temperature if a proper kind of support metal oxides is selected. [Pg.68]

Wenkin, M., Touillaux, R., Ruiz, P., Delmon, B., and Devillers, M. (1996) Influence of metallic precursors on the properties of carbon-supported bismuth-promoted palladium catalysts for the selective oxidation of glucose to gluconic acid. Appl. Catal., A, 148, 181-199. [Pg.187]

VOx supported on TiOi showed good catalytic activity in the selective oxidation of H2S to ammonium thiosulfate and elemental sulfur. V0x/Ti02 catalysts prepared by the precipitation-deposition method can achieve higher vanadium dispersions, and higher H2S conversions compared to those prepared by the impregnation method. [Pg.227]

Fig. 1(b) represents the selectivity to styrene as a ftmcfion of time fijr the above catal ts. It is observed that the selectivity to styrene is more than 95% over carbon nauofiber supported iron oxide catalyst compared with about 90% for the oxidized carbon nanofiber. It can be observed that there is an increase in selectivity to styrene and a decrease in selectivity to benzene with time on stream until 40 min. In particrdar, when the carbon nanofiber which has been treated in 4M HCl solution for three days is directly us as support to deposit the iron-precursor, the resulting catalyst shows a significantly lows selectivity to styrene, about 70%, in contrast to more than 95% on the similar catalyst using oxidized carbon nanofiber. The doping of the alkali or alkali metal on Fe/CNF did not improve the steady-state selectivity to styrene, but shortened the time to reach the steady-state selectivity. [Pg.743]

Selective Isomerization of Alkanes on Supported Tungsten Oxide Acids... [Pg.533]

The method outUned above was initially investigated for the introduction of isolated Ti(IV) sites onto a sihca substrate for use in selective oxidation catalysis. Since the development of a silica-supported Ti(lV) epoxida-tion catalyst by Shell in the 1970s, titania-sihca materials have attracted considerable attention [135,136]. Many other titania-sihca materials have been studied in this context including, but not hmited to, TSl and TS2 (titanium-substituted molecular sieves), Ti-/i (titanium-substituted zeolite). [Pg.107]

A catalytic system Mo-V-Nb-W supported on alumina was prepared by impregnation and investigated for the selective oxidation of propane. The effects of the variation of each metal and of the catalyst preparation were analysed. The results show that Mo and V species supported on alumina can lead to catalysts with high selectivity to propene and reasonable selectivity to acrolein. The presence of Nb and W seems to have little effect. The catalyst can be affected by the method of impregnation. [Pg.393]

The catalysts which have been tested for the direct epoxidation include (i) supported metal catalysts, (ii) supported metal oxide catalysts (iii) lithium nitrate salt, and (iv) metal complexes (1-5). Rh/Al203 has been identified to be one of the most active supported metal catalysts for epoxidation (2). Although epoxidation over supported metal catalysts provides a desirable and simple approach for PO synthesis, PO selectivity generally decreases with propylene conversion and yield is generally below 50%. Further improvement of supported metal catalysts for propylene epoxidation relies not only on catalyst screening but also fundamental understanding of the epoxidation mechanism. [Pg.404]

Manganese dioxide (Mn02) supported on silica provides an expeditious and high-yield route to carbonyl compounds. Benzyl alcohols are selectively oxidized to carbonyl compounds by use of 35 % Mn02 doped silica under MW irradiation conditions (Scheme 6.28) [96]. [Pg.196]

Figure 6.31 Schematic of the use of SEA to achieve selective adsorption of anionic Pt onto carbon-supported cobalt oxide particles. Figure 6.31 Schematic of the use of SEA to achieve selective adsorption of anionic Pt onto carbon-supported cobalt oxide particles.

See other pages where Supported selective oxidation is mentioned: [Pg.122]    [Pg.173]    [Pg.704]    [Pg.200]    [Pg.67]    [Pg.105]    [Pg.225]    [Pg.741]    [Pg.6]    [Pg.488]    [Pg.196]    [Pg.196]    [Pg.227]    [Pg.253]    [Pg.80]    [Pg.432]    [Pg.550]    [Pg.156]    [Pg.165]    [Pg.202]    [Pg.207]    [Pg.243]    [Pg.393]    [Pg.415]    [Pg.152]    [Pg.75]    [Pg.2]    [Pg.32]    [Pg.148]    [Pg.351]    [Pg.178]    [Pg.379]    [Pg.203]   
See also in sourсe #XX -- [ Pg.61 , Pg.62 ]




SEARCH



Metal oxide selective oxidation catalysts supported

Oxidation supports

Oxide supports

Selective Oxidation of H2S Over SiC-Supported Iron Catalysts into Elemental Sulfur

Selectivity ethylene oxidation over supported silver

Selectivity support

Supporting selection

© 2024 chempedia.info