Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supported metals reconstruction

Subsequently, Mitchell s group in Vancouver, by means of a tensor-LEED study17 of the Cu (110)-(2 x 3)N surface structure, supported a reconstruction model in which the topmost layer is described as a pseudo-(100)-c(2 x 2)N overlayer with metal corrugation of about 0.52 A in the reconstructed layer. Each nitrogen adatom is almost coplanar with the local plane formed by the four neighbouring copper atoms. Of the four N atoms present in the unit mesh, three are also bonded to Cu atoms in the layer below and therefore are five coordinate. [Pg.142]

In supported catalysts there is evidence that particle morphology is affected by the nature of the support, and by the methods of preparation and pretreatment. Coalescence and reconstruction of clean particles should be extremely rapid. The fact that in many cases small particles in contact do not combine into a single coherent particle suggests that the surface of supported metal particles may be relatively highly contaminated. When this occurs it must affect catalytic properties and correlations between activity and structure. [Pg.196]

These difficulties have stimulated the development of defined model catalysts better suited for fundamental studies (Fig. 15.2). Single crystals are the most well-defined model systems, and studies of their structure and interaction with gas molecules have explained the elementary steps of catalytic reactions, including surface relaxation/reconstruction, adsorbate bonding, structure sensitivity, defect reactivity, surface dynamics, etc. [2, 5-7]. Single crystals were also modified by overlayers of oxides ( inverse catalysts ) [8], metals, alkali, and carbon (Fig. 15.2). However, macroscopic (cm size) single crystals cannot mimic catalyst properties that are related to nanosized metal particles. The structural difference between a single-crystal surface and supported metal nanoparticles ( 1-10 nm in diameter) is typically referred to as a materials gap. Provided that nanoparticles exhibit only low Miller index facets (such as the cuboctahedral particles in Fig. 15.1 and 15.2), and assuming that the support material is inert, one could assume that the catalytic properties of a... [Pg.320]

It is usually difficult to discuss unambiguously on the role of the formation of sulphate, which may explain the deactivation. Their formation can equally occur on the support and on the noble metals. The poisoning effect of S02 has been reported by Qi el al. on Pd/Ti02/Al203 [112], However, in the presence of water, the stabilisation of hydroxyl groups could inhibit the adsorption of S02 [113], Burch also suggested a possible redispersion of palladium oxide promoted by the formation of hydroxyl species [114], Such tentative interpretations could correctly explain the tendencies that we observed irrespective to the nature of the supports, which indicate an improvement in the conversion of NO into N2 at high temperature. Nevertheless, the accentuation of those tendencies particularly on prereduced perovskite-based catalysts could be in connection with structural modifications associated with the reconstruction of the rhombohedral structure of... [Pg.316]

Poisoning is caused by chemisorption of compounds in the process stream these compounds block or modify active sites on the catalyst. The poison may cause changes in the surface morphology of the catalyst, either by surface reconstruction or surface relaxation, or may modify the bond between the metal catalyst and the support. The toxicity of a poison (P) depends upon the enthalpy of adsorption for the poison, and the free energy for the adsorption process, which controls the equilibrium constant for chemisorption of the poison (KP). The fraction of sites blocked by a reversibly adsorbed poison (0P) can be calculated using a Langmuir isotherm (equation 8.4-23a) ... [Pg.215]

The flexibility in composition of LDHs has led to an increase in interest in these materials. As a result of their relative ease of synthesis, LDHs represent an inexpensive, versatile and potentially recyclable source of a variety of catalyst supports, catalyst precursors or actual catalysts. In particular, mixed metal oxides obtained by controlled thermal decomposition of LDHs have large speciflc surface areas (100-300 m /g), basic properties, a homogeneous and thermally stable dispersion of the metal ion components, synergetic effects between the elements, and the possibility of structure reconstruction under mild conditions. In this section, attention is focused on recently reported catalytic applications in some flelds of high industrial and scientific relevance (including organic chemistry, environmental catalysis and natural gas conversion). [Pg.195]

For the detailed study of reaction-transport interactions in the porous catalytic layer, the spatially 3D model computer-reconstructed washcoat section can be employed (Koci et al., 2006, 2007a). The structure of porous catalyst support is controlled in the course of washcoat preparation on two levels (i) the level of macropores, influenced by mixing of wet supporting material particles with different sizes followed by specific thermal treatment and (ii) the level of meso-/ micropores, determined by the internal nanostructure of the used materials (e.g. alumina, zeolites) and sizes of noble metal crystallites. Information about the porous structure (pore size distribution, typical sizes of particles, etc.) on the micro- and nanoscale levels can be obtained from scanning electron microscopy (SEM), transmission electron microscopy ( ), or other high-resolution imaging techniques in combination with mercury porosimetry and BET adsorption isotherm data. This information can be used in computer reconstruction of porous catalytic medium. In the reconstructed catalyst, transport (diffusion, permeation, heat conduction) and combined reaction-transport processes can be simulated on detailed level (Kosek et al., 2005). [Pg.121]

The hydrogenolysis of EtaSiH over silica-supported Pd and Pt catalysts resulted in significant poisoning, specifically, the loss of activity in the hydrogenation of cyclohexene.375 Oxidation, however, fully restored the activity of catalysts with small metal particles (>50% dispersion) as a result of surface reconstruction. [Pg.669]


See other pages where Supported metals reconstruction is mentioned: [Pg.723]    [Pg.144]    [Pg.235]    [Pg.363]    [Pg.285]    [Pg.235]    [Pg.132]    [Pg.389]    [Pg.370]    [Pg.92]    [Pg.90]    [Pg.221]    [Pg.222]    [Pg.96]    [Pg.184]    [Pg.196]    [Pg.33]    [Pg.572]    [Pg.99]    [Pg.293]    [Pg.316]    [Pg.210]    [Pg.23]    [Pg.200]    [Pg.481]    [Pg.25]    [Pg.334]    [Pg.46]    [Pg.119]    [Pg.88]    [Pg.116]    [Pg.290]    [Pg.361]    [Pg.373]    [Pg.179]    [Pg.196]    [Pg.195]    [Pg.92]    [Pg.186]    [Pg.556]    [Pg.453]    [Pg.68]   
See also in sourсe #XX -- [ Pg.36 , Pg.85 ]




SEARCH



Reconstructed metals

© 2024 chempedia.info