Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superheater

The output from the turbine might be superheated or partially condensed, as is the case in Fig. 6.32. If the exhaust steam is to be used for process heating, ideally it should be close to saturated conditions. If the exhaust steam is significantly superheated, it can be desuperheated by direct injection of boiler feedwater, which vaporizes and cools the steam. However, if saturated steam is fed to a steam main, with significant potential for heat losses from the main, then it is desirable to retain some superheat rather than desuperheat the steam to saturated conditions. If saturated steam is fed to the main, then heat losses will cause excessive condensation in the main, which is not desirable. On the other hand, if the exhaust steam from the turbine is partially condensed, the condensate is separated and the steam used for heating. [Pg.195]

Solution The fraction of liquid vaporized on release is calculated from a heat balance. The sensible heat above saturated conditions at atmospheric pressure provides the heat of vaporization. The sensible heat of the superheat is given by... [Pg.269]

From steam tables, the outlet temperature is 251°C, which is superheated by 67°C. Although steam for process heating is preferred at saturated conditions, it is not desirable in this case to desuperheat by boiler feedwater injection to bring to saturated conditions. If saturated steam is fed to the main, then the heat losses from the main will cause a large amount of condensation in the main, which is undesirable. Hence it is better to feed steam to the main with some superheat to avoid condensation in the main. [Pg.410]

From steam tables, the outlet temperature is 160°C, which is superheated by 16°C. Again, it is desirable to have some superheat for the steam fed to the main to avoid condensation in the main. [Pg.411]

Thermal power plant components operated at high temperatures (>500°C) and pressures, such as superheater headers, steamline sections and Y-junctions, deserve great attention for both operation safety and plant availability concerns. In particular, during plant operation transients -startups, shutdowns or load transients - the above components may undergo high rates of temperature / pressure variations and, consequently, non-negligible time-dependent stresses which, in turn, may locally destabilize existing cracks and cause the release of acoustic emission. [Pg.67]

After preliminary shop tests on different mockups (e.g. superheater and reheater headers and steamline pipe sections), since 1996 AEBIL systems have been installed and are at work on several power plant components. In particular, three different components have been monitored throughout 1997 (monitoring still under way at the time being) ... [Pg.70]

Outlet Superheater (SH) header of Unit 3 (600 MW. supercritical multi-fuel l of an ENEL power station it consists of 2 twin and independent bodies (22 m length, 488.5 mjn internal diameter, 76.2 mm thickness material SA 430 TP 321H stairdess steel). This header has suffered from relevant cracking problems in assembly welds after 108.000 hours of service and... [Pg.70]

Outlet Superheater (SHI header of Unit 4 (600 MW. supercritical multi-fliel l of an ENEL power station it also consists of 2 twin and independent bodies (23 m length, 215 mm internal diameter, 103 mm thickness material ASTM A335 P22 - 2.25CrlMo - low alloy). Structural integrity problems and monitoring requirements and objectives same as above. [Pg.71]

Outlet Superheater (SH) header / 600 MW ENEL power unit (Unit 3)... [Pg.76]

BE-7S13 Superheater materials testing for ultra supercritical boilers Dr, A Vanderschaege GEC Alsthom -Stein Ind. [Pg.936]

Decant the ethereal solution from the yellow aldimine stannichloride which has separated, rinse the solid with two 50 ml. portions of ether, and transfer the solid to a 2-5 litre flask fitted for steam distillation and immersed in an oil bath at 110-120°. Pass steam through a trap (compare Fig. 11,40, 1,6) to remove condensed water, then through a superheater heated to 260° (Fig. I, 7, 2), and finally into the mixture (2). Continue the passage of y steam until the aldehyde is completely removed (4-5 litres 8-10 hours). Filter the white soUd at the pump, and dry in the air. The resulting p-naphthaldehyde, m.p. 53-54°, weighs 12 g. It may be further purified by distillation under diminished pressure (Fig. II, 19, ) -, pour the colourless distillate, b.p. 156-158°/15 mm., while hot into a mortar and powder it when cold. The m.p. is 57- 58°, and the recovery is over 90 per cent. [Pg.698]

An example of a modem, tangentially fired, supercritical, lignite-fuel furnace is shown in Figure 5. This unit, at maximum continuous ratings, supplies 2450 metric tons pet hour superheat steam at 26.6 MPa (3850 psi) and 544°C, and 2160 t/h reheat steam at 5.32 MPa (772 psi) and 541°C. These ate the values at the superheater and reheater oudet, respectively. Supercritical fluid-pressure installations ate, however, only rarely needed. Most power plants operate at subcritical pressures in the range of 12.4—19.3 MPa (1800—2800 psi). [Pg.143]

The oxidant preheater, positioned in the convective section and designed to preheat the oxygen-enriched air for the MHD combustor to 922 K, is located after the finishing superheat and reheat sections. Seed is removed from the stack gas by electrostatic precipitation before the gas is emitted to the atmosphere. The recovered seed is recycled by use of the formate process. Alkali carbonates ate separated from potassium sulfate before conversion of potassium sulfate to potassium formate. Sodium carbonate and potassium carbonate are further separated to avoid buildup of sodium in the system by recycling of seed. The slag and fly-ash removed from the HRSR system is assumed to contain 15—17% of potassium as K2O, dissolved in ash and not recoverable. [Pg.425]

The efficiency of the Rankine cycle itself can be increased by higher motive steam pressures and superheat temperatures, and lower surface condenser pressures in addition to rotating equipment selection. These parameters are generally optimized on the basis of materials of constmction as well as equipment sizes. Typical high pressure steam system conditions are in excess of 10,350 kPa (1500 psi) and 510 °C. [Pg.352]

Selection of the high pressure steam conditions is an economic optimisation based on energy savings and equipment costs. Heat recovery iato the high pressure system is usually available from the process ia the secondary reformer and ammonia converter effluents, and the flue gas ia the reformer convection section. Recovery is ia the form of latent, superheat, or high pressure boiler feedwater sensible heat. Low level heat recovery is limited by the operating conditions of the deaerator. [Pg.353]

After the waterwaH tubes deHver the saturated steam back into the top of the boHer dmm, moisture is separated out by a series ofbaffl.es, steam separators, and cormgated screens. The water removed drops down into the hot water contained in the steam dmm. The steam travels out through either a dry pipe, which leads to a superheater header, or a series of superheater tubes that connect directiy into the top of the steam dmm. The superheater tubes wind back into the top of the furnace and/or a hot flue-gas backpass section, next to the economizer, where heat from the combustion gases exiting the furnace superheats the steam traveling through the tubes. [Pg.7]

The superheated steam generated in the superheater section is coHected in a header pipe that leads to the plant s high pressure steam turbine. The steam turbine s rotor consists of consecutive sets of large, curved, steel aHoy disks, each of which anchors a row of precision-cast turbine blades, also caHed buckets, which protmde tangentiaHy from the shaft and impart rotation to the shaft when impacted by jets of high pressure steam. Rows of stationary blades are anchored to the steam turbine s outer sheH and are located between the rows of moving rotor blades. [Pg.7]

As the water evaporates into steam and passes on to the superheater, soHd matter can concentrate in a boHer s steam dmm, particularly on the water s surface, and cause foaming and unwanted moisture carryover from the steam dmm. It is therefore necessary either continuously or intermittently to blow down the steam dmm. Blowdown refers to the controHed removal of surface water and entrained contaminants through an internal skimmer line in the steam dmm. FHtration and coagulation of raw makeup feedwater may also be used to remove coarse suspended soHds, particularly organic matter. [Pg.7]

Is steam superheat maintained at the maximum level permitted by mechanical design ... [Pg.93]

Propylene is a colorless gas under normal conditions, has anesthetic properties at high concentrations, and can cause asphyxiation. It does not irritate the eyes and its odor is characteristic of olefins. Propjiene is a flammable gas under normal atmospheric conditions. Vapor-cloud formation from Hquid or vapor leaks is the main ha2ard that can lead to explosion. The autoignition temperature is 731 K in air and 696 K in oxygen (80). Evaporation of Hquid propylene can cause skin bums. Propylene also reacts vigorously with oxidising materials. Under unusual conditions, eg, 96.8 MPa (995 atm) and 600 K, it explodes. It reacts violentiy with NO2, N2O4, and N2O (81). Explosions have been reported when Hquid propylene contacts water at 315—348 K (82). Table 8 shows the ratio TJTp where is the initial water temperature, and T is the superheat limit temperature of the hydrocarbon. [Pg.128]

Likewise, the microscopic heat-transfer term takes accepted empirical correlations for pure-component pool boiling and adds corrections for mass-transfer and convection effects on the driving forces present in pool boiling. In addition to dependence on the usual physical properties, the extent of superheat, the saturation pressure change related to the superheat, and a suppression factor relating mixture behavior to equivalent pure-component heat-transfer coefficients are correlating functions. [Pg.96]

Fig. 28. Rankine cycle for superheat, where ( ) represents adiabatic (isentropic) compression ( ), isobaric heating ( ), vaporization (x x x x), superheating turbine expansion and (-----), heat rejection. To convert kPa to psi, multiply by 0.145. To convert kj to kcal, divide by 4.184. Fig. 28. Rankine cycle for superheat, where ( ) represents adiabatic (isentropic) compression ( ), isobaric heating ( ), vaporization (x x x x), superheating turbine expansion and (-----), heat rejection. To convert kPa to psi, multiply by 0.145. To convert kj to kcal, divide by 4.184.
G. E. Lien, ed.. Behavior of Superheater Alloys in High Temperature, High Pressure Steam, ASME, New York, 1971. [Pg.371]


See other pages where Superheater is mentioned: [Pg.202]    [Pg.257]    [Pg.413]    [Pg.2912]    [Pg.16]    [Pg.411]    [Pg.493]    [Pg.131]    [Pg.119]    [Pg.421]    [Pg.436]    [Pg.355]    [Pg.7]    [Pg.16]    [Pg.128]    [Pg.95]    [Pg.358]    [Pg.358]    [Pg.358]    [Pg.358]    [Pg.362]    [Pg.363]    [Pg.365]    [Pg.366]    [Pg.366]    [Pg.371]   
See also in sourсe #XX -- [ Pg.760 ]

See also in sourсe #XX -- [ Pg.805 ]

See also in sourсe #XX -- [ Pg.253 , Pg.271 , Pg.272 , Pg.288 , Pg.290 , Pg.339 , Pg.604 , Pg.605 , Pg.606 , Pg.612 , Pg.614 , Pg.615 , Pg.619 , Pg.636 , Pg.637 , Pg.642 ]




SEARCH



Ammonia Superheater

BOiling Nuclear Superheater

Boiling Superheat Correlation

Boiling superheat

Boiling superheat incipient

Coatings superheaters

Cooling of product gas in steam superheater

Degrees of superheat

Devolatilization superheat

Effect of Inlet Velocity on Wall Superheat

Enthalpy transfers after steam superheater

Excess Subcooling or Superheat

Final Superheater Heating Surface

Final Superheater Outlet Header and Live Steam Piping

Heat exchanger design superheater

Liquid superheat

Melt superheat

Modeling of Packed Bed Superheaters

Models for Prediction of Incipient Boiling Heat Flux and Wall Superheat

Progress of high temperature corrosion-resistant materials for superheaters

Reducing superheater corrosion in wood-fired boilers

References steam superheater

Steam Superheater Calculations (Chapter

Steam de-superheaters

Steam superheat correction factor

Steam superheater

Steam superheaters

Sulfur superheater

Superheat

Superheat

Superheat Advance Demonstration

Superheat Advance Demonstration Experiment

Superheat and Reheat

Superheat effect, condensation

Superheat required for boiling

Superheat-limit temperature

Superheated vapor Superheaters

Superheater for steam

Superheater tubes

Superheater tubes coatings

Superheaters

Superheaters

Superheaters, boilers

Superheaters, vaporizers

Surface Evaporation Mass Flux and Bulk Superheat

Surface Evaporation, the Only Way of Dissipating Superheat and Thermal Overfill

Vaporizers superheater

Wall Superheat

© 2024 chempedia.info