Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical water physical properties

FIG. 20-18 Physical properties of water versus temperature at 240 bar. [Reprinted from Kritzer and Dinjus, An Assessment of Supercritical Water Oxidation (SCWO) Existing Froblems, Tossibh Solutions and New Reactor Concepts Chem. Eng. ].,vol. 83(3), pp. 207-214, copyright 2001, withpermission form Elsevier ]... [Pg.15]

The heat of decomposition (238.4 kJ/mol, 3.92 kJ/g) has been calculated to give an adiabatic product temperature of 2150°C accompanied by a 24-fold pressure increase in a closed vessel [9], Dining research into the Friedel-Crafts acylation reaction of aromatic compounds (components unspecified) in nitrobenzene as solvent, it was decided to use nitromethane in place of nitrobenzene because of the lower toxicity of the former. However, because of the lower boiling point of nitromethane (101°C, against 210°C for nitrobenzene), the reactions were run in an autoclave so that the same maximum reaction temperature of 155°C could be used, but at a maximum pressure of 10 bar. The reaction mixture was heated to 150°C and maintained there for 10 minutes, when a rapidly accelerating increase in temperature was noticed, and at 160°C the lid of the autoclave was blown off as decomposition accelerated to explosion [10], Impurities present in the commercial solvent are listed, and a recommended purification procedure is described [11]. The thermal decomposition of nitromethane under supercritical conditions has been studied [12], The effects of very high pressure and of temperature on the physical properties, chemical reactivity and thermal decomposition of nitromethane have been studied, and a mechanism for the bimolecular decomposition (to ammonium formate and water) identified [13], Solid nitromethane apparently has different susceptibility to detonation according to the orientation of the crystal, a theoretical model is advanced [14], Nitromethane actually finds employment as an explosive [15],... [Pg.183]

Changes to the physical properties of a compound or material can have a dramatic influence on the susceptibility to microwave radiation. For example, ice has dielectric properties (e, 3.2 tan 8, 0.0009 e", 0.0029) that differ significantly from those of liquid water at 25 °C (s, 78 tan <5, 0.16 e", 12.48) [31], rendering it essentially microwave-transparent. Although liquid water absorbs microwave energy efficiently, the dielectric constant decreases with increasing temperature and supercritical water (Tc 374 °C) is also microwave-transparent. [Pg.39]

The dielectric constant of supercritical water is in the range of 2 to 3. This range is similar to the range of nonpolar solvents such as hexane or heptane, which have dielectric constants of 1.8 and 1.9, respectively. When hazardous wastes are heated to high temperature and pressure, physical properties such as density, dielectric constant, viscosity, diffusivity, electric conductance, and solubility are optimum for destroying organic pollutants. Table 10.2 lists the characteristics of supercritical water, and Figure 10.3 illustrates the influence of temperature and pressure on the dielectric constants and density of water. As both temperature and pressure increase, the dielectric constants and density of water decrease dramatically. [Pg.396]

The physical properties of the supercritical fluid differ from those of the bulk liquid. One of the most notable changes is the lower dielectric constant of polar solvents such as water which allows the accumulation of low-polarity solutes at this interface. This explains the crucial role of the hydro-phobicity of solutes during reactions in the solution. Thermolysis as well as radical abstraction reactions occur in this region. A temperature of approximately 800 K was determined for the interfacial region surrounding the... [Pg.441]

Hua et al. (1995) proposed a supercritical water region in addition to two reaction regions such as the gas phase in the center of a collapsing cavitation bubble and a thin shell of superheated liquid surrounding the vapor phase. Chemical transformations are initiated predominantly by pyrolysis at the bubble interface or in the gas phase and attack by hydroxyl radicals generated from the decomposition of water. Depending on its physical properties, a molecule can simultaneously or sequentially react in both the gas and interfacial liquid regions. [Pg.457]

Supercritical C02 treatment affects the microstructure of the cement paste. In the first stage of the sc C02 treatment, free water in the cement pores is extracted. As a consequence of this dehydration process, channels of about 50-pm diameter develop. Dissolved calcium in the free water reacts with the C02 and crystallizes with the C02 as calcite along the channel walls. In the second stage, the structural water of the hydrated cement phases is extracted. The carbonation of the portlandite to form more calcite takes place. Water, bound to the CSH surrounding the partially hydrated cement clinker particles, is partially replaced by a carbonate formation. The short fibers of the CSH-cement framework, which are responsible for the physical properties of the cement, are not affected (Hartmann et al., 1999). [Pg.246]

A solvothermal process is one in which a material is either recrystallized or chemically synthesized from solution in a sealed container above ambient temperature and pressure. The recrystallization process was discussed in Section 1.5.1. In the present chapter we consider synthesis. The first solvothermal syntheses were carried out by Robert Wilhelm Bunsen (1811-1899) in 1839 at the University of Marburg. Bunsen grew barium carbonate and strontium carbonate at temperatures above 200°C and pressures above 100 bar (Laudise, 1987). In 1845, C. E. Shafhautl observed tiny quartz crystals upon transformation of freshly precipitated silicic acid in a Papin s digester or pressure cooker (Rabenau, 1985). Often, the name solvothermal is replaced with a term to more closely refer to the solvent used. For example, solvothermal becomes hydrothermal if an aqueous solution is used as the solvent, or ammothermal if ammonia is used. In extreme cases, solvothermal synthesis takes place at or over the supercritical point of the solvent. But in most cases, the pressures and temperatures are in the subcritical realm, where the physical properties of the solvent (e.g., density, viscosity, dielectric constant) can be controlled as a function of temperature and pressure. By far, most syntheses have taken place in the subcritical realm of water. Therefore, we focus our discussion of the materials synthesis on the hydrothermal process. [Pg.171]

The physical properties of supercritical fluids tend to lie between those of gases and liquids. The increased density relative to a gas, and the decreased viscosity relative to a liquid, allow supercritical fluids to be used as excellent solvents in many laboratory and industrial applications (19-25). Also, some notable solvation peculiarities of supercritical fluids have been discovered. For example, supercritical water can dissolve nonpolar oils because the dielectric constant of supercritical water decreases drastically near the critical point (26). [Pg.636]

Basic research efforts with respect to supercritical water and SCWO have been directed within a number of areas that are critical for design and optimization of a SCWO reactor and ancillary equipment. These areas include physical property measurement and correlations, kinetics and reaction mechanisms, salt equilibrium and transport behavior, and corrosion. [Pg.408]

Many physical properties undergo dramatic changes in value as water is heated and pressurized from sub- to supercritical conditions, particularly in the region of the critical point where some properties such as heat capacity reach a singularity. This change in behavior means that more familiar correlations of properties measured at subcritical conditions are likely to be inaccurate when applied at supercritical conditions. There have been some experimental studies performed to measure, tabulate, and in some cases correlate values of key properties of supercritical water, such as the self-diffusion coefficient, viscosity,thermal conductivity," heat capacity at constant volume," dielectric constant," and selfdissociation constant." " Far more work has been devoted to calculation of property values from models fitted empirically to data or developed more rigorously through molecular simulation. For PVT data and its derivatives, several attempts... [Pg.408]

The enhanced physical properties for supercritically produced salme-terol (e.g., high crystallinity, polymorphic purity, powder uniformity) correlate well with the enhanced dispersion and flow behavior of this powder. However, as shown in some other investigations (12,28), particle size and shape, surface energy, and crystallinity may have to be optimized separately, using all process parameters available, perhaps including a coformulation step. For some compounds with low solubility in water, a compromise must be found between improved bioavailability and physicochemical stability. [Pg.276]

This chapter explores the application of biocatalytic polymerization in exotic solvents. These solvents are often termed unconventional , in that they would not generally be considered as a polymerization media. However, their use over the previous decade has dramatically increased due to the international push for cleaner, greener reaction pathways in an effort to reduce volatile organic compounds (VOCs). The first solvents to be discussed (and by far the most fully investigated in the literature) are supercritical fluids. Within this field, supercritical C02 has been the most highly reported solvent. The second solvent class is ionic liquids. These have become increasingly popular over the last five years. Biphasic solvents will then be described and their application to biocatalytic polymerization. This section will be limited to biphasic solvents that are more unusual and, apart from a brief mention, will not encompass the broad field of emulsion polymerization in water. Finally, the use of fluorous solvents will be described. In all cases, the physical properties of the solvent imparts interesting,... [Pg.323]

In order to overcome this limitation, the elegant concept of biphasic catalysis for hydroformylation reaction was further extended to media other than water [8]. The identity of this ideal second phase is far from obvious as very few solvents present chemical and physical properties in accordance with the hydroformylation requirements. Without giving a complete list, one can cite perfluorinated solvents [9] (see Chapter 4), supercritical fluids [10] (see Chapter 6), and nonaqueous ILs [11]. At... [Pg.478]


See other pages where Supercritical water physical properties is mentioned: [Pg.192]    [Pg.348]    [Pg.15]    [Pg.510]    [Pg.510]    [Pg.677]    [Pg.399]    [Pg.51]    [Pg.30]    [Pg.72]    [Pg.327]    [Pg.328]    [Pg.33]    [Pg.10]    [Pg.2827]    [Pg.184]    [Pg.410]    [Pg.190]    [Pg.176]    [Pg.115]    [Pg.195]    [Pg.375]    [Pg.259]    [Pg.152]    [Pg.163]    [Pg.1141]    [Pg.377]    [Pg.19]    [Pg.3]    [Pg.510]    [Pg.1033]   
See also in sourсe #XX -- [ Pg.232 ]

See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Supercritical physical properties

Supercritical water

Supercritical water properties

Water physical properties

Water properties

© 2024 chempedia.info