Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical fluids recovery

In this study, C16-C32 wax distillate is separated into n-paraffin and denormal oil fractions by vapor phase contacting with type 5A molecular sieves. 2,2,4-Trimethylpentane (isooctane), 2,2-dimethylbutane, and 2-methylpentane are each used as the supercritical fluid. Recovery of n-paraffins from the molecular sieves is accomplished by contacting with nitrogen or ammonia gas. [Pg.221]

Fig. 2 Supercritical fluid recoveries of polycyclic aromatic hydrocarbons as a function of density and temperature. Fig. 2 Supercritical fluid recoveries of polycyclic aromatic hydrocarbons as a function of density and temperature.
Polymers and Supercritical Fluids. Prior to the mid-1980s, Httie information was pubhshed regarding polymer processing with supercritical and near-critical fluids (1). In 1985, the solubiUties of many polymers in near- and supercritical CO2 were reported. These polymers were examined for thek abiUty to increase viscosity in C02-enhanced oil recovery (24). Since then, a number of studies have examined solubiUties of polymers in... [Pg.223]

Garimella et investigated the effect on trifluralin recovery of different extraction methods. A supercritical fluid extraction (SEE) procedure for the isolation of the analytes from the matrices with a commercial SEE system (Dionex Model 703)... [Pg.395]

Supercritical fluid extraction (SFE) is generally used for the extraction of selected analytes from solid sample matrices, but applications have been reported for aqueous samples. In one study, recoveries of 87-100% were obtained for simazine, propazine, and trietazine at the 0.05 ug mL concentration level using methanol-modified CO2 (10%, v/v) to extract the analytes, previously preconcentrated on a C-18 Empore extraction disk. The analysis was performed using LC/UV detection. Freeze-dried water samples were subjected to SFE for atrazine and simazine, and the optimum recoveries were obtained using the mildest conditions studied (50 °C, 20 MPa, and 30 mL of CO2). In some cases when using LEE and LC analysis, co-extracted humic substances created interference for the more polar metabolites when compared with SFE for the preparation of the same water sample. ... [Pg.428]

Supercritical fluid extraction can be performed in a static system with the attainment of a steady-state equilibrium or in a continuous leaching mode (dynamic mode) for which equilibrium is unlikely to be obtained (257,260). In most instances the dynamic approach has been preferred, although the selection of the method probably depends just as much on the properties of the matrix as those of the analyte. The potential for saturation of a component with limited solubility in a static solvent pool may hinder complete recovery of the analyte. In a dynamic system, the analyte is continuously exposed to a fresh stream of solvent, increasing the rate of extraction from the matrix. In a static systea... [Pg.409]

Principles and Characteristics Supercritical fluid extraction uses the principles of traditional LSE. Recently SFE has become a much studied means of analytical sample preparation, particularly for the removal of analytes of interest from solid matrices prior to chromatography. SFE has also been evaluated for its potential for extraction of in-polymer additives. In SFE three interrelated factors, solubility, diffusion and matrix, influence recovery. For successful extraction, the solute must be sufficiently soluble in the SCF. The timescale for diffusion/transport depends on the shape and dimensions of the matrix particles. Mass transfer from the polymer surface to the SCF extractant is very fast because of the high diffusivity in SCFs and the layer of stagnant SCF around the solid particles is very thin. Therefore, the rate-limiting step in SFE is either... [Pg.85]

Hinman et al. [492] have compared SFE and ASE in the extraction of antioxidants from LDPE. Comparable extraction yields were obtained with both techniques. However, sample clean-up was necessary after ASE , while with SFE the extract could be analysed directly without any post-extraction clean-up. Supercritical fluid extraction of 15 polymer additives (AOs, UVAs, process lubricants, flame retardants and antistatic agents) from eight PS formulations was compared to dissolu-tion/precipitation extractions [557], Additive recoveries were comparable. Numerous additional comparisons can be found under the specific headings of the extraction techniques (Sections 3.3 and 3.4). [Pg.138]

Studies designed to improve the determination of environmental contaminants will continue to provide refinements and improvements in the determination of acrylonitrile. The current high level of activity in supercritical fluid extraction of solid and semisolid samples should yield improved recoveries and sensitivities for the determination of acrylonitrile in solid wastes, and the compound should be amenable to supercritical fluid chromatographic analysis. Immunoassay analysis is another area of intense current activity from which substantial advances in the determination of acrylonitrile in environmental samples can be anticipated (Vanderlaan et al. 1988). [Pg.96]

Fuoco et al. [539] has reported the analysis of priority pollutants in seawater using online supercritical fluid chromatography, cryotrap gas chromatogra-phy-mass spectrometry. Using this system polynuclear aromatic hydrocarbons and polychlorobiphenyls were measured in seawater with recoveries better than 75%. [Pg.383]

In recent years, supercritical fluids such as scC02 were considered to be modern green solvents they were non-toxic, readily available, inexpensive, and environmentally benign. They are studied as a reaction medium for catalytic applications because of their interest in product separation and catalyst recovery, and... [Pg.236]

Snyder JL, Grob RL, McNally ME, OostdykTS.The effect of instrumental parameters and soil matrix on the recovery of organochlorine and organophosphate pesticides from soils using supercritical fluid extraction. J. Chromatogr. Sci. 1993 31 183-191. [Pg.268]

Lagenfeld et al. [48] studied the effect of temperature and pressure on the supercritical fluid extraction efficiencies of polyaromatic hydrocarbons and polychlorobiphenyls in soils. At 50°C raising the pressure from 350 to 650atm had no effect on recoveries. [Pg.131]

Reindt and Hoffler [50] optimized parameters in the supercritical fluid extraction of polyaromatic hydrocarbons from soil. These workers used carbon dioxide -8% methanol for extraction and obtained 88-101% recovery of polyaromatic hydrocarbons in the final high-performance liquid chromatography. [Pg.132]

The apparatus incorporates a fibre optic interface for the spectrofluorimetric measurement on the supercritical carbon dioxide emerging from the extraction cell of a supercritical fluid extractor, prior to depressurization from up to 350 bar. Recoveries of polyaromatic hydrocarbons are between 89 and 107%, and measurements can be carried on with a relative standard deviation of less than 5%. [Pg.132]

Johnson and Van Emon [57] have described a quantitative enzyme based immunoassay procedure for the determination of polychlorinated biphenyls in soils and sediments and compared the results with those obtained by a gas chromatographic method. The soil is extracted with methanol, or Soxhlet extracted or extracted with a supercritical fluid. In the case of the latter two extractants good agreement was obtained between immunoassay and gas chromatographic methods. Spiking recoveries from soil achieved ranged from 104% (Aroclor 1248) to 107% (Aroclor 1242). Detection limits were 9pg kg-1 (Aroclor 1245) and 10.5pg kg-1 (Aroclor 1242). Chlorinated anisoles, benzenes or phenols did not interfere. [Pg.174]

Snyder et al. [20] have compared supercritical fluid extraction with classical sonication and Soxhlet extraction for the extraction of selected pesticides from soils. Samples extracted with supercritical carbon dioxide modified with 3% methanol at 350atm and 50°C gave a =85% recovery of organochlorine insecticides including Dichlorvos, Endrin, Endrin aldehyde, p,p -DDT mirex and decachlorobiphenyl (and organophosphorus insecticides). [Pg.210]

Snyder et al. [94] compared supercritical extraction with classical sonication and Soxhlet extraction for the extraction of selected organophosphorus insecticides from soil. Samples extracted with supercritical carbon dioxide modified with 3% methanol at 350atm and 50°C gave a =85% recovery of Diazinon (diethyl-2-isopropyl-6-methyl-4-pyrimidinyl phosphorothiodate or 0,0 diethyl-0-(2-isopropyl-6-methyl-4-pyrimidyl) phosphorothioate). Ronnel (or Fenchlorphos) 0,0-dimethyl-0-2,4,5 trichlorophenol phosphorothiodate), Parathion ethyl (diethyl-p-nitrophenyl (phosphorothioate), Tetrachlorovinphos (trans,-2-chloro-l-(2,4,5 trichlorophenyl) vinyl (chlorophenyl-O-methylphenyl phosphorothioate) and Methiadathion. Supercritical fluid extraction with methanol modified carbon dioxide has been applied to the determination of organophosphorus insecticides in soil [260]. [Pg.234]

A laboratory-assembled supercritical fluid extractor was designed for the efficient recovery of volatile nitrosamines from frankfurters. The nitrosamines were separated and detected using a GC-TEA-CLD. Recovery of 10 volatile aliphatic and alicylic nitrosamines from frankfurters spiked at the 20 ppb level was 84.3-104.8% with RSD 2.34-6.13%581. [Pg.1145]

S.B. Hawthorne, C.B. Grabanski, E. Martin and D.J. Miller, Comparison of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids recovery, selectivity and effects on sample matrix. J. Chromatogr.A 892 (2000) 421 133. [Pg.55]

Supercritical fluid extraction (SFE), microwave-assisted extraction (MAE) and Soxhlet extraction under various experimental conditions were applied for spiked poly(vinyl) chloride samples. Extracted dyes were separated in an ODS column (250 X 4.6 mm i.d. particle size 5 jum) using methanol as the mobile phase. Dyes are well separated by this method as demonstrated in Fig. 3.59. The optimal parameters of the extraction methods are compiled in Table 3.23. Recoveries depended on both the type of extraction method and the chemical structure of the dye. It was found that the highest recovery can be obtained by MAE and the extraction efficacy was the lowest for Solvent red 24 [129],... [Pg.440]


See other pages where Supercritical fluids recovery is mentioned: [Pg.98]    [Pg.98]    [Pg.224]    [Pg.951]    [Pg.8]    [Pg.189]    [Pg.242]    [Pg.165]    [Pg.2061]    [Pg.138]    [Pg.77]    [Pg.696]    [Pg.410]    [Pg.410]    [Pg.896]    [Pg.916]    [Pg.918]    [Pg.452]    [Pg.140]    [Pg.1327]    [Pg.554]    [Pg.1013]    [Pg.119]    [Pg.133]    [Pg.450]    [Pg.1135]   
See also in sourсe #XX -- [ Pg.622 ]




SEARCH



Fluid recovery

© 2024 chempedia.info