Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfuric acid roast process

Vanadium usually is recovered from its ores by one of two processes, (1) leaching raw mineral with hot dilute sulfuric acid, and (2) roasting ore with common salt to convert vanadium into water soluble sodium vanadates. In the sulfuric acid leaching process, vanadium is extracted from acid leach liquors by solvent extraction with an aliphatic amine or an alkyl phosphoric acid in kerosene. The organic solvent extract then is treated with an aqueous solution of ammonia in the presence of ammonium chloride to convert vanadium into ammonium metavanadate. Alternatively, the organic extract is treated with dilute sulfuric acid or an aqueous solution of soda ash under controlled conditions of pH. Vanadium is precipitated from this solution as a red cake of sodium polyvanadate. [Pg.963]

Selenium is distributed widely in nature and is found in most rocks and soils at concentrations between 0.1 and 2.0 ppm (Fishbein 1983). However, elemental selenium is seldom found naturally, but it is obtained primarily as a byproduct of copper refining (Fishbein 1983). Selenium is contained in the constituents of the copper anode that are not solubilized during the copper refining process and ultimately accumulate on the bottom of the electrorefining tank. These constituents, usually referred to as slimes, contain roughly 5-25% selenium and 2-10% tellurium. Selenium is commercially produced by either soda ash roasting or sulfuric acid roasting of the copper slimes. [Pg.233]

Sulfuric Acid Roasting. In this method, the copper slimes are mixed with sulfuric acid and roasted at 500-600 °C to produce selenium dioxide, which volatilizes readily at the roasting temperature. The selenium dioxide is reduced to elemental selenium during the scrubbing process with sulfur dioxide and water. The resultant commercial grade selenium can be purified to 99.5-99.7% (Hoffmann and King 1997). [Pg.233]

Selenium is found in a few rare minerals such as crooksite and clausthalite. In years past it has been obtained from flue dusts remaining from processing copper sulfide ores, but the anode metal from electrolytic copper refineries now provide the source of most of the world s selenium. Selenium is recovered by roasting the muds with soda or sulfuric acid, or by smelting them with soda and niter. [Pg.96]

Sulfur Dioxide Processing, Repriuts of 1972—1974 Chem. Eng. Prog, articles, AIChE, New York (1975). Contaius thirteen papers on flue gas desulfurization, two on SO2 control iu pulp and paper, one on sulfuric acid tail gas, one on SO2 from ore roasting, and two on NO from nitric acid. [Pg.415]

Historically, soda ash was produced by extracting the ashes of certain plants, such as Spanish barilla, and evaporating the resultant Hquor. The first large scale, commercial synthetic plant employed the LeBlanc (Nicolas LeBlanc (1742—1806)) process (5). In this process, salt (NaCl) reacts with sulfuric acid to produce sodium sulfate and hydrochloric acid. The sodium sulfate is then roasted with limestone and coal and the resulting sodium carbonate—calcium sulfide mixture (black ash) is leached with water to extract the sodium carbonate. The LeBlanc process was last used in 1916—1917 it was expensive and caused significant pollution. [Pg.522]

The sulfur dioxide produced by the process is usually converted to sulfuric acid, or sometimes Hquified, and the design of modem roasting faciUties takes into account the need for an efficient and environmentally clean operation of the acid plant (see SuLFURiC ACID AND SULFURTRIOXIDe). [Pg.165]

HydrometaHurgical Processes. The hydrometaHurgical treatments of oxide ores involve leaching with ammonia or with sulfuric acid. In the ammoniacal leaching process, the nickel oxide component of the ore first is reduced selectively. Then the ore is leached with ammonia which removes the nickel into solution, from which it is precipitated as nickel carbonate by heating. A nickel oxide product used in making steel is produced by roasting the carbonate. [Pg.3]

In the United States, aluminum sulfate is usually produced by the reaction of bauxite or clay (qv) with sulfuric acid (see Sulfuric acid and sulfur trioxide). Bauxite is imported and more expensive than local clay, generally kaolin, which is more often used. Clay is first roasted to remove organics and break down the crystalline stmcture in order to make it more reactive. This is an energy intensive process. The purity of the starting clay or bauxite ore, especially the iron and potassium contents, are reflected in the assay of the final product. Thus the selection of the raw material is governed by the overall economics of producing a satisfying product. [Pg.176]

For environmental and economic reasons, the eady practice of roasting zinc sulfide and discharging the sulfur dioxide to the atmosphere gave way to plants where the sulfur dioxide is converted to sulfuric acid. Desulfurization takes place while the ore particles are suspended in hot gases. Called flash-and fluid-bed roasters, these processes are described below. Some plants use combinations of roasters and sintering for desulfurization. [Pg.399]

Sodium chromate can be converted to the dichromate by a continuous process treating with sulfuric acid, carbon dioxide, or a combination of these two (Fig. 2). Evaporation of the sodium dichromate Hquor causes the precipitation of sodium sulfate and/or sodium bicarbonate, and these compounds are removed before the final sodium dichromate crystallization. The recovered sodium sulfate may be used for other purposes, and the sodium bicarbonate can replace some of the soda ash used for the roasting operation (76). The dichromate mother Hquor may be returned to the evaporators, used to adjust the pH of the leach, or marketed, usually as 69% sodium dichromate solution. [Pg.138]

Although it is not a catalytic process, the roasting of iron sulfide in fluidized beds at 650 to 1,100°C (1,202 to 2,012°F) is analogous. The pellets are 10-mm (0.39-in) diameter. There are numerous ants, but they are threatened with obsolescence because cheaper sources of sulfur are available for making sulfuric acid. [Pg.2104]

Fluorides and dust are emitted to the air from the fertilizer plant. All aspects of phosphate rock processing and finished product handling generate dust, from grinders and pulverizers, pneumatic conveyors, and screens. The mixer/reactors and dens produce fumes that contain silicon tetrafluoride and hydrogen fluoride. A sulfuric acid plant has two principal air emissions sulfur dioxide and acid mist. If pyrite ore is roasted, there will also be particulates in air emissions that may contain heavy metals such as cadmium, mercury, and lead. [Pg.69]

Nevertheless, manganese nodules can, at best, be considered to be similar to land-based nickel laterites, and consequently most of the processing techniques that have been tried are similar to those used on lateritic ores. Reduction roasting followed by ammonia leaching, as in the Nicaro process, and high-temperature sulfuric acid leaching, as in the Moa Bay operation, have been extensively tried to process nodules. [Pg.570]

Sulfide ores usually contain small amounts of mercury, arsenic, selenium, and tellurium, and these impurities volatilize during the ore treatment. All the volatilized impurities, with the exception of mercury, are collected in the dust recovery systems. On account of its being present in low concentrations, mercury is not removed by such a system and passes out with the exit gases. The problem of mercury contamination is particularly pertinent to zinc plants since the sulfidic ores of zinc contain traces of mercury (20-300 ppm). The mercury traces in zinc sulfide concentrates volatilize during roasting and contaminate the sulfuric acid that is made from the sulfur dioxide produced. If the acid is then used to produce phosphatic fertilizers, this may lead to mercury entering the food chain as a contaminant. Several processes have been developed for the removal of mercury, but these are not yet widely adopted. [Pg.772]


See other pages where Sulfuric acid roast process is mentioned: [Pg.223]    [Pg.161]    [Pg.223]    [Pg.161]    [Pg.266]    [Pg.163]    [Pg.438]    [Pg.222]    [Pg.165]    [Pg.174]    [Pg.174]    [Pg.329]    [Pg.119]    [Pg.184]    [Pg.281]    [Pg.392]    [Pg.392]    [Pg.79]    [Pg.134]    [Pg.135]    [Pg.135]    [Pg.141]    [Pg.263]    [Pg.748]    [Pg.1255]    [Pg.89]    [Pg.81]    [Pg.354]    [Pg.487]    [Pg.567]    [Pg.571]    [Pg.572]    [Pg.572]    [Pg.574]    [Pg.574]    [Pg.739]    [Pg.92]    [Pg.95]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Acid process

Roast

Roasting

Sulfuric acid process

© 2024 chempedia.info