Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur facility

Polyaniline (PANI) can be formed by electrochemical oxidation of aniline in aqueous acid, or by polymerization of aniline using an aqueous solution of ammonium thiosulfate and hydrochloric acid. This polymer is finding increasing use as a "transparent electrode" in semiconducting devices. To improve processibiHty, a large number of substituted polyanilines have been prepared. The sulfonated form of PANI is water soluble, and can be prepared by treatment of PANI with fuming sulfuric acid (31). A variety of other soluble substituted AJ-alkylsulfonic acid self-doped derivatives have been synthesized that possess moderate conductivity and allow facile preparation of spincoated thin films (32). [Pg.242]

Make acid yields coumaUc acid when treated with fuming sulfuric acid (19). Similar treatment of malic acid in the presence of phenol and substituted phenols is a facile method of synthesi2ing coumarins that are substituted in the aromatic nucleus (20,21) (see Coumarin). Similar reactions take place with thiophenol and substituted thiophenols, yielding, among other compounds, a red dye (22) (see Dyes and dye intermediates). Oxidation of an aqueous solution of malic acid with hydrogen peroxide (qv) cataly2ed by ferrous ions yields oxalacetic acid (23). If this oxidation is performed in the presence of chromium, ferric, or titanium ions, or mixtures of these, the product is tartaric acid (24). Chlorals react with malic acid in the presence of sulfuric acid or other acidic catalysts to produce 4-ketodioxolones (25,26). [Pg.522]

Sulfonic acids are prone to reduction with iodine [7553-56-2] in the presence of triphenylphosphine [603-35-0] to produce the corresponding iodides. This type of reduction is also facile with alkyl sulfonates (16). Aromatic sulfonic acids may also be reduced electrochemicaHy to give the parent arene. However, sulfonic acids, when reduced with iodine and phosphoms [7723-14-0] produce thiols (qv). Amination of sulfonates has also been reported, in which the carbon—sulfur bond is cleaved (17). Ortho-Hthiation of sulfonic acid lithium salts has proven to be a useful technique for organic syntheses, but has Httie commercial importance. Optically active sulfonates have been used in asymmetric syntheses to selectively O-alkylate alcohols and phenols, typically on a laboratory scale. Aromatic sulfonates are cleaved, ie, desulfonated, by uv radiation to give the parent aromatic compound and a coupling product of the aromatic compound, as shown, where Ar represents an aryl group (18). [Pg.96]

These reactions tend to give few by-products. The main by-product in each case is the sulfide, RSR, which amounts to less than 3—5% of the thiols produced. Some of the sulfides produced have appHcations, although they tend to be much smaHer-volume requirements than the amounts produced. The sulfides can be incinerated for disposal, assuming that the incineration facility can handle high sulfur feedstocks. [Pg.10]

Nitrogen nucleophiles used to diplace the 3 -acetoxy group include substituted pyridines, quinolines, pyrimidines, triazoles, pyrazoles, azide, and even aniline and methylaniline if the pH is controlled at 7.5. Sulfur nucleophiles include aLkylthiols, thiosulfate, thio and dithio acids, carbamates and carbonates, thioureas, thioamides, and most importandy, from a biological viewpoint, heterocycHc thiols. The yields of the displacement reactions vary widely. Two general approaches for improving 3 -acetoxy displacement have been reported. One approach involves initial, or in situ conversion of the acetoxy moiety to a more facile leaving group. The other approach utilizes Lewis or Brmnsted acid activation (87). [Pg.32]

Conversion to a more facile, sulfur-derived, leaving group can be achieved by treatment with sodium thiosulfate or salts of thio and dithio acids (75,87). Under anhydrous conditions, boron tribromide converts the 3 -acetoxy group to a bromide whereas trimethyl silyl iodide gives good yields of the 3 -iodide (87,171,172). These 3 -halides are much more reactive, even when the carboxyl group is esterified, and can be displaced readily by cyano and by oxygen nucleophiles (127). [Pg.32]

The facile addition of sulfur dioxide to buta-1,3-dienes provides a useful source of... [Pg.117]

Phosphate fertilizer complexes often have sulfuric and phosphoric acid production facilities. Sulfuric acid is produced by burning molten sulfur in air to produce sulfur dioxide, which is then catalytically converted to sulfur trioxide for absorption in oleum. Sulfur dioxide can also be produced by roasting pyrite ore. Phosphoric acid is manufactured by adding sulfuric acid to phosphate rock. The... [Pg.68]

An electrostatic precipitator is used to remove more tar from coke oven gas. The tar is then sent to storage. Ammonia liquor is also separated from the tar decanter and sent to wastewater treatment after ammonia recovery. Coke oven gas is further cooled in a final cooler. Naphthalene is removed in a separator on the final cooler. Light oil is then removed from the coke oven gas and is fractionated to recover benzene, toluene, and xylene. Some facilities may include an onsite tar distillation unit. The Claus process is normally used to recover sulfur from coke oven gas. During the coke quenching, handling, and screening operation, coke breeze is produced. The breeze is either reused on site (e.g., in the sinter plant) or sold offsite as a by-product. [Pg.73]

Raw material input to petroleum refineries is primarily crude oil however, petroleum refineries use and generate an enormous number of chemicals, many of which leave the facilities as discharges of air emissions, wastewater, or solid waste. Pollutants generated typically include VOCs, carbon monoxide (CO), sulfur oxides (SOJ, nitrogen oxides (NOJ, particulates, ammonia (NH3), hydrogen sulfide (HjS) metals, spent acids, and numerous toxic organic compounds. [Pg.101]

Pollution prevention is always preferred to the use of end-of-pipe pollution control facilities. Therefore, every attempt should be made to incorporate cleaner production processes and facilities to limit, at source, the quantity of pollutants generated. The choice of flash smelting over older technologies is the most significant means of reducing pollution at source. Sulfur dioxide emissions can be controlled by ... [Pg.136]

Yourfacility receives toluene and naphthalene (both listed toxic chemicals) from an off-site location. You react the toluene with air to form benzoic acid and react the naphthalene with sulfuric acid, which forms phthalic acid and also produces sulfur dioxide fumes. Your facility processes toluene and naphthalene. Both are used as reactants to produce benzoic acid and phthalic acid, chemicals not on the section 313 list. [Pg.38]

The phthalic acid and benzoic acid are reacted to form a reaction intermediate. The reaction intermediate is dissolved in sulfuric acid, which precipitates terephthalic acid (TPA). Fifty percent of the TPA is sold as a product and 50 percent is further processed at your facility into polyester fiber. The TPA Is treated with ethylene glycol to form an intermediate product, which is condensed to polyester. [Pg.38]

Lead-acid batteries are produced using lead, sulfuric acid, additives such as antimony, and various other raw materials. Your facility s battery production capacity is 5,000 batleries per day, and the facility normally operates 24 hours per day, 300 days per year. [Pg.81]

Requirements for desulfurizing the feed are much the same as in the semi-regenerative process. While the continuous regeneration facilities would permit operation with higher sulfur feeds, extensive HjS corrosion results, making feed... [Pg.56]

The use of dimethyl sulfoxide-acetic anhydride as a reagent for the oxidation of unhindered steroidal alcohols does not appear to be as promising due to extensive formation of by-products. However, the reagent is sufficiently reactive to oxidize the hindered 11 j -hydroxyl group to the 11-ketone in moderate yield. The use of sulfur trioxide-pyridine complex in dimethyl sulfoxide has also been reported. The results parallel those using DCC-DMSO but reaction times are much shorter and the work-up is more facile since the separation of dicyclohexylurea is not necessary. Allylic alcohols can be oxidized by this procedure without significant side reactions. [Pg.238]

Sulfonation of the aromatic ring of l, 2, 2 -trifluorostyrene below 0 C does not give satisfactory yields with chlorosulfonic acid or a sulfur trioxide-dioxane complex Tar forms on heating In contrast, under similar conditions ipso substitution IS facile at the position of a trialkylsilyl or -stannyl group Thus, 4-trimethyl-silyl-T 2, 2 D-trifluorostyrene affords the corresponding trimethylsilyl sulfonate [20] (equation 9)... [Pg.406]

The facile a,a diacylation with arylisocyanates has been applied to the synthesis of polymers (434-436), while the monoacylation products have been used as intermediates for the synthesis of substituted a-quinolones and their sulfur analogs (437). [Pg.397]

Sulfurous acid has never been isolated as a pure compound, although it has recently been detected in the gas phase by neutralization reionization mass spectrometry (NRMS) following the facile dissociative ionization (70 eV) of either diethyl sulfite or ethanesulfonic acid " ... [Pg.717]

Because of possible catalytic and biological relevance of metal-sulfur clusters, several such compounds of cobalt have been prepared. The action of H2S or M2S (M = alkali metal) on a non-aqueous solution of a convenient cobalt compound (often containing, or in the presence of, a phosphine) is a typical route. Diamagnetic [Co6Ss(PR3)6] (R = Et, Ph) comprise an octahedral array of metal atoms (Co-Co in the range 281.7 to 289.4pm), all faces capped by atoms,and show facile redox behaviour... [Pg.1119]


See other pages where Sulfur facility is mentioned: [Pg.71]    [Pg.58]    [Pg.71]    [Pg.58]    [Pg.169]    [Pg.238]    [Pg.389]    [Pg.153]    [Pg.32]    [Pg.1541]    [Pg.2365]    [Pg.127]    [Pg.519]    [Pg.69]    [Pg.91]    [Pg.102]    [Pg.105]    [Pg.138]    [Pg.138]    [Pg.139]    [Pg.142]    [Pg.418]    [Pg.427]    [Pg.513]    [Pg.235]    [Pg.50]    [Pg.145]    [Pg.101]    [Pg.1]    [Pg.185]    [Pg.265]    [Pg.673]    [Pg.208]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



© 2024 chempedia.info