Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur dioxide efficiencies

Sulfur dioxide is used for refrigeration and also serves as raw material for the production of sulfuric acid. It is also used as a bleaching agent in the textile and food industries. It is an effective disinfectant and is employed as such for wooden kegs and barrels and brewery apparatus and for the prevention of mold in the drying of fruits. Sulfur dioxide efficiently controls fermentation in the making of wine. It is used in the sulfite process for paper pulp, as a liquid solvent in petroleum refining, and as a raw material in many plants in place of sulfites, bisulfites, or hydrosulfites. [Pg.496]

Pollutants. The problems posed by ak pollutants are very serious. Within a museum, measures can be taken to remove harmful substances as efficiently as possible by means of the installation of appropriate filter systems in the ventilation equipment. Proposed specification values for museum climate-control systems requke filtering systems having an efficiency for particulate removal in the dioctyl phthalate test of 60—80%. Systems must be able to limit both sulfur dioxide and nitrogen dioxide concentrations <10 /ig/m, and ozone to <2 /ig/m. ... [Pg.429]

The sulfur dioxide produced by the process is usually converted to sulfuric acid, or sometimes Hquified, and the design of modem roasting faciUties takes into account the need for an efficient and environmentally clean operation of the acid plant (see SuLFURiC ACID AND SULFURTRIOXIDe). [Pg.165]

Another area where improved air quaUty has impacted on sulfur use is ia agriculture. As sulfur dioxide emissions have decreased, sulfur content of soils has also decreased. Sulfur, recognized as the fourth most important plant nutrient, is necessary for the most efficient use of other nutrients and optimum plant growth. Because many soils are becoming sulfur-deficient, a demand for sulfur-containing fertilizers has been created. Farmers must therefore apply a nutrient that previously was freely available through atmospheric deposition and low grade fertilizers. [Pg.123]

In mineral technology, sulfur dioxide and sulfites are used as flotation depressants for sulfide ores. In electrowinning of copper from leach solutions from ores containing iron, sulfur dioxide prereduces ferric to ferrous ions to improve current efficiency and copper cathode quaHty. Sulfur dioxide also initiates precipitation of metallic selenium from selenous acid, a by-product of copper metallurgy (326). [Pg.148]

Double-Absorption Plants. In the United States, newer sulfuric acid plants ate requited to limit SO2 stack emissions to 2 kg of SO2 per metric ton of 100% acid produced (4 Ib /short ton Ib = pounds mass). This is equivalent to a sulfur dioxide conversion efficiency of 99.7%. Acid plants used as pollution control devices, for example those associated with smelters, have different regulations. This high conversion efficiency is not economically achievable by single absorption plants using available catalysts, but it can be attained in double absorption plants when the catalyst is not seriously degraded. [Pg.186]

A variation of the n on regen erabi e absorption is the spray dry process. Time slurry is sprayed through an atomizing nozzle into a tower where it countercurtendy contacts the flue gas. The sulfur dioxide is absorbed and water in the slurry evaporated as calcium sulfite-sulfate collects as a powder at the bottom of the tower. The process requires less capital investment, but is less efficient than regular scmbbing operations. [Pg.216]

Regenerable absorption processes have also been developed. In these processes, the solvent releases the sulfur dioxide in a regenerator and then is reused in the absorber. The WelLman-Lord process is typical of a regenerable process. Figure 11 illustrates the process flow scheme. Sulfur dioxide removal efficiency is from 95—98%. The gas is prescmbbed with water, then contacts a sodium sulfite solution in an absorber. The sulfur dioxide is absorbed into solution by the following reaction ... [Pg.216]

Roasting. Copper and lead sulfides are direcdy smelted but not zinc sulfide. However, theoretical calculations are encouraging (20) and, if an efficient means of condensing zinc rapidly from 1600 K in the presence of carbon dioxide, sulfur dioxide, and steam can be devised, the process may be feasible. The reaction of zinc vapor to yield zinc oxide or zinc sulfide presents the main difficulty. [Pg.399]

If the gas to be measured contains sulfur dioxide, it has to be scrubbed from the gas before oxidation of the reduced compounds can occur. The gas is scrubbed using an SO2 scrubber. This may contain citrate buffer solution (potassium citrate or sodium citrate). The collection efficiency of the sulfur diox ide may be as high as 99%. [Pg.1301]

The most efficient processes in Table I are for steel and alumintim, mainly because these metals are produced in large amounts, and much technological development has been lavished on them. Magnesium and titanium require chloride intermediates, decreasing their efficiencies of production lead, copper, and nickel require extra processing to remove unwanted impurities. Sulfide ores produce sulfur dioxide (SO2), a pollutant, which must be removed from smokestack gases. For example, in copper production the removal of SO, and its conversion to sulfuric acid adds up to 8(10) JA g of additional process energy consumption. In aluminum production disposal of waste ciyolite must be controlled because of possible fiuoride contamination. [Pg.772]

In the second section, unconverted hydrogen sulfide reacts with the produced sulfur dioxide over a bauxite catalyst in the Claus reactor. Normally more than one reactor is available. In the Super-Claus process (Figure 4-3), three reactors are used. The last reactor contains a selective oxidation catalyst of high efficiency. The reaction is slightly exothermic ... [Pg.116]

The crude ester is cooled, an equal volume of benzene is added, then the free acid is neutralized by shaking with about 250 cc. of a 10 per cent solution of sodium carbonate (Note 4). The benzene solution is poured into 1300 cc. of a saturated solution of sodium bisulfite (about 60 g. of technical sodium bisulfite per 100 cc.), contained in a wide-neck bottle equipped with an efficient stirrer, and the mixture stirred for two and a half hours. The mixture soon warms up a little and becomes semi-solid. It is filtered through a 20-cm. Buchner funnel and carefully washed, first with 200 cc. of a saturated solution of sodium bisulfite, finally with two 150-cc. portions of benzene (Notes 5 and 6). The white pearly flakes of the sodium bisulfite addition product are transferred to a 3-I. round-bottom wide-neck flask equipped with a mechanical stirrer and containing 700 cc. of water, 175 cc. of concentrated sulfuric acid, and 500 cc. of benzene. The flask is heated on a steam bath under a hood, the temperature being kept at 55°, and the mixture is stirred for thirty minutes (Note 7). The solution is then poured into a separatory funnel, the benzene separated and the water layer extracted with a 200-cc. portion of benzene. The combined benzene solution is shaken with excess of 10 per cent sodium carbonate solution to remove free acid and sulfur dioxide (Note 8). The benzene is washed with a little water and then dried over anhydrous potassium carbonate (Note 9). The benzene is distilled at ordinary pressure over a free flame from a 500-cc. Claisen flask, the solution being added from a separatory funnel as fast as the benzene distils. It is advisable to distil the ester under reduced pressure although it can be done under ordinary pressure. The fraction distilling around n8°/5mm., 130710 mm., 138715 mm., 148725 mm., 155735 mm., or... [Pg.70]

An alternative procedure consisted of trichloroacetylation of the end groups and redox initiation with sulfur dioxide and pyridine309. In these two methods the block efficiency was not high. An improved method was proposed by Furukawa in which a macromolecular initiator is prepared from polyetherglycol and azobiscyanovaleroyl dichloride310 311. ... [Pg.26]

In the wine industry, FTIR has become a useful technique for rapid analysis of industrial-grade glycerol adulteration, polymeric mannose, organic acids, and varietal authenticity. Urbano Cuadrado et al. (2005) studied the applicability of spectroscopic techniques in the near- and mid-infrared frequencies to determine multiple wine parameters alcoholic degree, volumic mass, total acidity, total polyphenol index, glycerol, and total sulfur dioxide in a much more efficient approach than standard and reference methods in terms of time, reagent, and operation errors. [Pg.497]

The electrophilic character of sulfur dioxide does not only enable addition to reactive nucleophiles, but also to electrons forming sulfur dioxide radical anions which possess the requirements of a captodative" stabilization (equation 83). This electron transfer occurs electrochemically or chemically under Leuckart-Wallach conditions (formic acid/tertiary amine - , by reduction of sulfur dioxide with l-benzyl-1,4-dihydronicotinamide or with Rongalite The radical anion behaves as an efficient nucleophile and affords the generation of sulfones with alkyl halides " and Michael-acceptor olefins (equations 84 and 85). [Pg.216]


See other pages where Sulfur dioxide efficiencies is mentioned: [Pg.80]    [Pg.80]    [Pg.176]    [Pg.45]    [Pg.329]    [Pg.215]    [Pg.217]    [Pg.536]    [Pg.30]    [Pg.1597]    [Pg.2371]    [Pg.27]    [Pg.27]    [Pg.21]    [Pg.69]    [Pg.132]    [Pg.133]    [Pg.141]    [Pg.143]    [Pg.144]    [Pg.328]    [Pg.758]    [Pg.775]    [Pg.1113]    [Pg.216]    [Pg.398]    [Pg.694]    [Pg.1070]    [Pg.564]    [Pg.99]    [Pg.264]    [Pg.398]    [Pg.694]    [Pg.1070]    [Pg.385]    [Pg.356]   
See also in sourсe #XX -- [ Pg.311 , Pg.313 ]




SEARCH



© 2024 chempedia.info