Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfoxides carbanions

High diastereoselectivity at the sulfinyl group bearing carbon and low diastereoselectivity at the prostereogenic carbonyl group resulted on addition of a chiral sulfoxide carbanion to an... [Pg.648]

A reaction similar to that discussed above occurs between 2 equivalents of the sulfoxide carbanion 44 and diastereomerically pure menthyl p-toluenesulfinate 45 and results in the formation of optically active disulfoxide 46 and starting sulfoxide 44 (71). [Pg.347]

Although the carbanion of (i )-methyl p-tolyl sulfoxide reacted with aldehydes and ketones with a poor diastereoselectivity, it reacts with imines with a much higher stereoselectivity as long as the imine substituent is an aromatic ring. (7 )-(-i-)-Tetrahydropalmatine was synthesized by addition of (7 )-methyl p-tolyl sulfoxide carbanion to 3,4-dihydro-6,7-dimethoxyisoquinoline (eq 17). ... [Pg.442]

Preparative Method prepared by carboxylation of (R)-(+)-Methyl p-Tolyl Sulfoxide carbanion generated with Lithium Di-isopropylamide (eq 1). ... [Pg.514]

For several years, she studied chemical reaction mechanisms, especially those involving sulfoxide carbanions and their synthetic applications. Then, she turned to mechanistic enzymology. Her main interests concerned steroid isomerases and cytochrome P-450, vitamin K-dependent carboxylations, and biotin biosynthesis. She contributed to the mechanistic understanding of several enzymes of the pathway, namely, amino-oxopelargo-nate synthase, diaminopelargonate aminotransferase, and more importantly biotin synthase. [Pg.180]

One of the key pioneers in this area was Solladie, who thoroughly investigated the reactions of chiral sulfoxide carbanions [21], Their diastereoselec-tive additions to ketones and aldehydes are illustrative of the method (Scheme 13.16) [67]. Addition of 104 to cyclohexyl methyl ketone (105) thus furnished adduct 106. The sulfoxide, having fulfilled its role as an auxiliary, is subsequently subjected to reductive cleavage to afford hydroxy ester 107. After transesterification, alcohol 108 was produced in 95 % ee. Despite the numerous years that have transpired since these results were first published, such optically active tertiary alcohols remain otherwise difficult to prepare, a feature that attests to the potential value of chiral sulfoxide anions in asymmetric synthesis. [Pg.445]

In sulfoxides and sulfones an adjacent CH group is also deprotonated by strong bases. If one considers the sulfinyl (—SO—) or sulfonyl (—SOj—) groups to be functional groups, then these carbanions are d -synthons. It will be shown later (p. 48f. and 65f.), that these anions may either serve as nonfunctional, d -, d - or d -synthons. [Pg.8]

Solvent for Displacement Reactions. As the most polar of the common aprotic solvents, DMSO is a favored solvent for displacement reactions because of its high dielectric constant and because anions are less solvated in it (87). Rates for these reactions are sometimes a thousand times faster in DMSO than in alcohols. Suitable nucleophiles include acetyUde ion, alkoxide ion, hydroxide ion, azide ion, carbanions, carboxylate ions, cyanide ion, hahde ions, mercaptide ions, phenoxide ions, nitrite ions, and thiocyanate ions (31). Rates of displacement by amides or amines are also greater in DMSO than in alcohol or aqueous solutions. Dimethyl sulfoxide is used as the reaction solvent in the manufacture of high performance, polyaryl ether polymers by reaction of bis(4,4 -chlorophenyl) sulfone with the disodium salts of dihydroxyphenols, eg, bisphenol A or 4,4 -sulfonylbisphenol (88). These and related reactions are made more economical by efficient recycling of DMSO (89). Nucleophilic displacement of activated aromatic nitro groups with aryloxy anion in DMSO is a versatile and useful reaction for the synthesis of aromatic ethers and polyethers (90). [Pg.112]

Fluonnation of a sulfoxide-stabilized carbanion provided a route to fluorinated estrones after elimination of the sulfoxide [111] (equation 62). [Pg.164]

Recently developed trifluoromethylatmg agents capable of transferring the trifluoromethyl group as a cation to strongly nucleophilic compounds such as carbanions and sulfur and phosphorus nucleophiles are prepared from o-biphenyl trifluoromethyl sulfoxide [164] and are shown in equation 141... [Pg.485]

Asymmetric induction by sulfoxide is a very attractive feature. Enantiomerically pure cyclic a-sulfonimidoyl carbanions have been prepared (98S919) through base-catalyzed cyclization of the corresponding tosyloxyalkylsulfoximine 87 to 88 followed by deprotonation with BuLi. The alkylation with Mel or BuBr affords the diastereomerically pure sulfoximine 89, showing that the attack of the electrophile at the anionic C-atom occurs, preferentially, from the side of the sulfoximine O-atom independently from the substituent at Ca-carbon. The reaction of cuprates 90 with cyclic a,p-unsaturated ketones 91 was studied but very low asymmetric induction was observed in 92. [Pg.81]

On treatment with a strong base such as sodium hydride or sodium amide, dimethyl sulfoxide yields a proton to form the methylsulfinyl carbanion (dimsyl ion), a strongly basic reagent. Reaction of dimsyl ion with triphenylalkylphosphonium halides provides a convenient route to ylides (see Chapter 11, Section III), and with triphenylmethane the reagent affords a high concentration of triphenylmethyl carbanion. Of immediate interest, however, is the nucleophilic reaction of dimsyl ion with aldehydes, ketones, and particularly esters (//). The reaction of dimsyl ion with nonenolizable ketones and... [Pg.92]

A 1.5 to 2 M solution of methylsulfinyl carbanion in dimethyl sulfoxide is prepared under nitrogen as above from sodium hydride and dry dimethyl sulfoxide. An equal volume of dry tetrahydrofuran is added and the solution is cooled in an ice bath during the addition, with stirring, of the ester (0.5 equivalent for each 1 equivalent of carbanion neat if liquid, or dissolved in dry tetrahydrofuran if solid) over a period of several minutes. The ice bath is removed and stirring is continued for 30 minutes. The reaction mixture is then poured into three times its volume of water, acidified with aqueous hydrochloric acid to a pH of 3-4 (pH paper), and thoroughly extracted with chloroform. The combined extracts are washed three times with water, dried over anhydrous sodium sulfate, and evaporated to yield the jS-ketosulfoxide as a white or pale yellow crystalline solid. The crude product is triturated with cold ether or isopropyl ether and filtered to give the product in a good state of purity. [Pg.94]

Methylsulfinyl carbanion (dimsyl ion) is prepared from 0.10 mole of sodium hydride in 50 ml of dimethyl sulfoxide under a nitrogen atmosphere as described in Chapter 10, Section III. The solution is diluted by the addition of 50 ml of dry THF and a small amount (1-10 mg) of triphenylmethane is added to act as an indicator. (The red color produced by triphenylmethyl carbanion is discharged when the dimsylsodium is consumed.) Acetylene (purified as described in Chapter 14, Section I) is introduced into the system with stirring through a gas inlet tube until the formation of sodium acetylide is complete, as indicated by disappearance of the red color. The gas inlet tube is replaced by a dropping funnel and a solution of 0.10 mole of the substrate in 20 ml of dry THF is added with stirring at room temperature over a period of about 1 hour. In the case of ethynylation of carbonyl compounds (given below), the solution is then cautiously treated with 6 g (0.11 mole) of ammonium chloride. The reaction mixture is then diluted with 500 ml of water, and the aqueous solution is extracted three times with 150-ml portions of ether. The ether solution is dried (sodium sulfate), the ether is removed (rotary evaporator), and the residue is fractionally distilled under reduced pressure to yield the ethynyl alcohol. [Pg.124]

The big difference between the extent of asymmetric induction on the addition to a prostereogenic carbonyl group of simple carbanions a to a chiral sulfoxide on the one hand and enolates of sulfinyl esters on the other, can be attributed to the capacity of the ester function to chelate magnesium in the transition states and intermediates. The results already described for the addition of chiral thioacetal monosulfoxide to aldehydes (see Section 1.3.6.5.) underscore the importance of other functions, e.g., sulfide, for the extent of asymmetric induction. [Pg.659]

An a-phosphoryl sulfoxide (4) has also been prepared by the reaction of the appropriate carbanion with sulfinate ester 19 (see also Section II.A.l)18. Ugi and coworkers prepared (S, R, S)-65 by reaction of (R, R)-64 with ester 19. The (S, S, R) diastereomer was prepared from (S, S)-6496. [Pg.70]

An optically active sulfoxide may often be transformed into another optically active sulfoxide without racemization. This is often accomplished by formation of a new bond to the a-carbon atom, e.g. to the methyl carbon of methyl p-tolyl sulfoxide. To accomplish this, an a-metallated carbanion is first formed at low temperature after which this species may be treated with a large variety of electrophiles to give a structurally modified sulfoxide. Alternatively, nucleophilic reagents may be added to a homochiral vinylic sulfoxide. Structurally more complex compounds formed in these ways may be further modified in subsequent steps. Such transformations are the basis of many asymmetric syntheses and are discussed in the chapter by Posner and in earlier reviews7-11. [Pg.79]

Significantly, (a) a-sulfonyl carbanions of thiirane dioxides, generated from the latter in the presence of strong bases such as potassium t-butoxide19 and alkoxide ions99, do epimerize to relieve steric repulsion between substituents as in 42 above and (b) the a-hydrogen in aryl-substituted three-membered sulfoxides (e.g. 46c) are sufficiently acidic to... [Pg.403]

To summarize under favorable conditions the acidity of a-hydrogens facilitates the generation of a-sulfoxy and a-sulfonyl carbanions in thiirane and thiirene oxides and dioxides as in acyclic sulfoxides and sulfones. However, the particular structural constraints of three-membered ring systems may lead not only to different chemical consequences following the formation of the carbanions, but may also provide alternative pathways not available in the case of the acyclic counterparts for hydrogen abstraction in the reaction of bases. [Pg.405]

Stereochemical constraints in cyclic sulfones and sulfoxides impart increased weight to strain and conformational factors in the generation of carbanions and their stability, causing distinct differences between the behavior of cyclic and open-chain systems233, due primarily to the prevention of extensive rotation about the C —S bond, which is the major way that achiral carbanions racemize. Study of the a-H/D exchange rate fce and the racemization rate ka may provide information concerning the acidity-stereochemical relationships in optically active cyclic sulfone and sulfoxide systems. [Pg.443]


See other pages where Sulfoxides carbanions is mentioned: [Pg.447]    [Pg.108]    [Pg.630]    [Pg.265]    [Pg.112]    [Pg.447]    [Pg.108]    [Pg.630]    [Pg.265]    [Pg.112]    [Pg.300]    [Pg.109]    [Pg.152]    [Pg.324]    [Pg.569]    [Pg.106]    [Pg.107]    [Pg.328]    [Pg.330]    [Pg.643]    [Pg.654]    [Pg.773]    [Pg.402]    [Pg.404]    [Pg.404]    [Pg.454]   
See also in sourсe #XX -- [ Pg.423 ]

See also in sourсe #XX -- [ Pg.414 ]

See also in sourсe #XX -- [ Pg.423 ]




SEARCH



Carbanion sulfoxide-stabilized

Dimethyl sulfoxide carbanion)

Methylsulfinyl carbanion dimethyl sulfoxide)

Methylsulfinyl carbanion sulfoxide

Methylsulfinyl carbanion sulfoxide, Sodium

Sulfoxide, benzyl methyl carbanion

Sulfoxide, methyl p-tolyl carbanions

Sulfoxide- and Phosphorus-Stabilized Carbanions

Sulfoxide-stabilized allylic carbanion

Sulfoxides carbanions from

Sulfoxides, P-hydroxy via a-sulfinyl carbanions

Sulfoxides, alkyl aryl carbanions

Sulfoxides, indolizidinyl via a-sulfinyl carbanion

© 2024 chempedia.info