Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfides peroxidation

Entry Substrate Oxidant Sulfide Peroxide (E)-Sulfoxide (S)-Peroxide (E)-Alcohol ... [Pg.82]

During oxidation of a sulfide to a sulfoxide, it was found that the peracid, in DMF, was dangerously unstable. It was shown it could convert to the dibenzoylperoxide, probably of lesser reactivity, thus permitting a build-up of potential energy during a semi-batch process. However, the explosion seems to have occurred in the reagent solution, not yet added to the sulfide. Peroxide formation might provide an explanation for the earlier incident reported below, but seems less satisfactory here. Like other formates, DMF is a reducant. Replacement of DMF by dichloromethane permitted scale-up. [Pg.944]

Organic compounds can generate the initiators of free radical sequences through the primary photochemical processes homolytic dissociation into radicals, hydrogen-atom abstraction, photoionization, and electron transfer reactions. The homolytic dissociation reactions are limited to compounds containing relatively weak bonds (<98 kcal), such as sulfides, peroxides, and some halides and ethers. Representatives of all of these classes of compounds are certainly present in seawater, but the limited information on the qualitative and quantitative aspects of their occurrence does not allow for an estimate of their importance in the promotion of free radical reactions. The same is true for electron transfer reactions, which may be an important photochemical process for organic transition metal complexes. [Pg.314]

The oxidation of 2- and 5-sulfides is usually performed in acetic acid and 30% hydrogen peroxide (213, 229, 263, 345-350) Or with m-chloroperbenzoic acid (341). Ary] (8, 272. 349, 351-353) and alkyl sulfones (129, 203, 214, 270, 274, 275) are thus obtained in good yields. Other oxidative reagents such as KMn04 (7, 273) or CrO (7) in acetic add have also been used. [Pg.415]

Aldehydes are easily oxidized to carboxylic acids under conditions of ozonide hydroly SIS When one wishes to isolate the aldehyde itself a reducing agent such as zinc is included during the hydrolysis step Zinc reduces the ozonide and reacts with any oxi dants present (excess ozone and hydrogen peroxide) to prevent them from oxidizing any aldehyde formed An alternative more modem technique follows ozone treatment of the alkene m methanol with reduction by dimethyl sulfide (CH3SCH3)... [Pg.263]

One equivalent of a peroxy acid or of hydrogen peroxide converts sulfides to sulf oxides two equivalents gives the corresponding sulfone... [Pg.686]

Section 16 16 Oxidation of sulfides yields sulfoxides then sulfones Sodium metaper lodate IS specific for the oxidation of sulfides to sulfoxides and no fur ther Hydrogen peroxide or peroxy acids can yield sulfoxides (1 mole of oxidant per mole of sulfide) or sulfone (2 moles of oxidant per mole of sulfide)... [Pg.695]

Oldhamite, see Calcium sulfide Opal, see Silicon dioxide Orpiment, see Arsenic trisulfide Oxygen powder, see Sodium peroxide... [Pg.274]

Lead dioxide Aluminum carbide, hydrogen peroxide, hydrogen sulfide, hydroxylamine, ni-troalkanes, nitrogen compounds, nonmetal halides, peroxoformic acid, phosphorus, phosphorus trichloride, potassium, sulfur, sulfur dioxide, sulfides, tungsten, zirconium... [Pg.1209]

Manganese dioxide Aluminum, hydrogen sulfide, oxidants, potassium azide, hydrogen peroxide, peroxosulfuric acid, sodium peroxide... [Pg.1209]

The rate of dissolution is limited by oxygen availabiUty rather than by cyanide concentration. When oxygen solubiUty is reduced by water salinity or by consumption by ore constituents such as sulfide minerals, enrichment of the air with oxygen or addition of hydrogen or calcium peroxide improves leaching kinetics and decreases cyanide consumption (10). [Pg.378]

Peroxomonosulfuric acid oxidi2es cyanide to cyanate, chloride to chlorine, and sulfide to sulfate (60). It readily oxidi2es carboxyflc acids, alcohols, alkenes, ketones, aromatic aldehydes, phenols, and hydroquiaone (61). Peroxomonosulfuric acid hydroly2es rapidly at pH <2 to hydrogen peroxide and sulfuric acid. It is usually made and used ia the form of Caro s acid. [Pg.94]

Diacyl peroxides have been reduced with a variety of reduciag agents, eg, lithium aluminum hydride, sulfides, phosphites, phosphines, and haUde ions (187). Hahdes yield carboxyUc acid salts (RO) gives acid anhydrides. With iodide ion and certain trivalent phosphoms compounds, the reductions are sufftcientiy quantitative for analytical purposes. [Pg.124]

The hberated iodine, as the complex triiodide ion, may be titrated with standard thiosulfate solution. A general iodometric assay method for organic peroxides has been pubUshed (253). Some peroxyesters may be determined by ferric ion-catalyzed iodometric analysis or by cupric ion catalysis. The latter has become an ASTM Standard procedure (254). Other reducing agents are ferrous, titanous, chromous, staimous, and arsenite ions triphenylphosphine diphenyl sulfide and triphenjiarsine (255,256). [Pg.132]

Strontium Oxide, Hydroxide, and Peroxide. Strontium oxide, SrO, is a white powder that has a specific gravity of 4.7 and a melting point of 2430°C. It is made by heating strontium carbonate with carbon in an electric furnace, or by heating celestite with carbon and treating the sulfide formed with caustic soda and then calcining the product (10). It reacts with water to form strontium hydroxide [18480-07-4] and is used as the source of strontium peroxide [1314-18-7],... [Pg.475]

Chemical Properties. The most significant chemical property of L-ascorbic acid is its reversible oxidation to dehydro-L-ascorbic acid. Dehydro-L-ascorbic acid has been prepared by uv irradiation and by oxidation with air and charcoal, halogens, ferric chloride, hydrogen peroxide, 2,6-dichlorophenolindophenol, neutral potassium permanganate, selenium oxide, and many other compounds. Dehydro-L-ascorbic acid has been reduced to L-ascorbic acid by hydrogen iodide, hydrogen sulfide, 1,4-dithiothreitol (l,4-dimercapto-2,3-butanediol), and the like (33). [Pg.13]

Although these curative systems may also be used with the polyepichlorohydrin elastomers containing AGE, the polymers were developed to be cured with conventional mbber curatives, sulfur, and peroxides. These polymers containing the pendent aHyl group are readily cured with a typical sulfur cure system such as zinc oxide, and sulfur along with the activators, tetramethylthiuram mono sulfide [97-74-5] (TMTM) and... [Pg.557]

There are no known practical peroxide cure systems for the PO—AGE polymers. Apparentiy the peroxide attacks the polymer backbone at a rate that is unfavorably competitive with the cross-linking rate. A typical sulfur cure system consists of zinc oxide [1314-13-2] tetramethylthiuram mono sulfide (TMTM), 2-2-mercaptobenzothiazole [149-30-4] (MBT), and sulfur. A sulfur donor cure system is zinc oxide, di-o-tolylguanidine [97-39-2] (DOTG) and tetramethylthiuram hexasulftde. [Pg.557]


See other pages where Sulfides peroxidation is mentioned: [Pg.140]    [Pg.124]    [Pg.181]    [Pg.189]    [Pg.201]    [Pg.201]    [Pg.668]    [Pg.140]    [Pg.124]    [Pg.181]    [Pg.189]    [Pg.201]    [Pg.201]    [Pg.668]    [Pg.126]    [Pg.903]    [Pg.735]    [Pg.412]    [Pg.348]    [Pg.481]    [Pg.39]    [Pg.1]    [Pg.119]    [Pg.459]    [Pg.333]    [Pg.110]    [Pg.134]    [Pg.136]    [Pg.209]    [Pg.158]    [Pg.395]    [Pg.186]    [Pg.93]    [Pg.128]    [Pg.139]    [Pg.148]    [Pg.152]    [Pg.88]    [Pg.291]   
See also in sourсe #XX -- [ Pg.5 , Pg.124 ]




SEARCH



Peroxides sulfides

© 2024 chempedia.info