Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfate activation and

Ti or Zr salts deposited on silicon dioxide the titanium or zirconium oxide supported on Si02 is sulfate-activated and physically blended with an acidic montmorillonite clay... [Pg.270]

Molybdate is also known as an inhibitor of the important enzyme ATP sulfurylase where ATP is adenosine triphosphate, which activates sulfate for participation in biosynthetic pathways (56). The tetrahedral molybdate dianion, MoO , substitutes for the tetrahedral sulfate dianion, SO , and leads to futile cycling of the enzyme and total inhibition of sulfate activation. Molybdate is also a co-effector in the receptor for steroids (qv) in mammalian systems, a biochemical finding that may also have physiological implications (57). [Pg.475]

Qualitative Analysis. Nitric acid may be detected by the classical brown-ring test, the copper-turnings test, the reduction of nitrate to ammonia by active metal or alloy, or the nitrogen precipitation test. Nitrous acid or nitrites interfere with most of these tests, but such interference may be eliminated by acidifying with sulfuric acid, adding ammonium sulfate crystals, and evaporating to alow volume. [Pg.46]

Carbon is alkylated ia the form of enolates or as carbanions. The enolates are ambident ia activity and can react at an oxygen or a carbon. For example, refluxing equimolar amounts of dimethyl sulfate and ethyl acetoacetate with potassium carbonate gives a 36% yield of the 0-methylation product, ie, ethyl 3-methoxy-2-butenoate, and 30% of the C-methylation product, ie, ethyl 2-methyl-3-oxobutanoate (26). Generally, only one alkyl group of the sulfate reacts with beta-diketones, beta-ketoesters, or malonates (27). Factors affecting the 0 C alkylation ratio have been extensively studied (28). Reaction ia the presence of soHd Al O results mosdy ia C-alkylation of ethyl acetoacetate (29). [Pg.199]

In order to circumvent this problem, there has been significant activity directed toward the search for a less environmentally toxic and more selective oxidizing agent than chromium. For example, Hoechst has patented a process which uses organorhenium compounds. At a 75% conversion, a mixture of 86% of 2-methyl-l,4-naphthoquinone and 14% 6-methyl-l,4-naphthoquinone was obtained (60). Ceric sulfate (61) and electrochemistry (62,63) have also been used. [Pg.155]

Zinc ores are generally floated at the mine (18). In the case of simple zinc sulfide ores, flotation is carried out by treatment with copper sulfate to activate the sphalerite causing it to be wet by the organic collector (eg, xanthate). The now-hydrophobic zinc ore particles attach themselves to the rising bubbles. Oxidized ore particles present must be sulftdized with sodium sulfide to be floated (19). Flotation produces concentrates which are ca 50—60% zinc. In mixed ore, the lead and copper are usually floated after depressing the sphalerite with cyanide or zinc sulfate. The sphalerite is then activated and floated. [Pg.399]

The tubular positive plate uses rigid, porous fiber glass tubes covered with a perforated plastic foil as the active material retainer (Fig. 2). Dry lead oxide, PbO, and red lead, Pb O, are typically shaken into the tubes which are threaded over the grid spines. The open end is then sealed by a polyethylene bar. Patents describe a procedure for making a type of tube for the tubular positive plate (90) and a method for filling tubular plates of lead—acid batteries (91). Tubular positive plates are pickled by soaking in a sulfate solution and are then cured. Some proceed directiy to formation and do not requite the curing procedure. [Pg.578]

About 97% of po dose is absorbed from the GI tract. The dmg undergoes extensive first-pass hepatic metaboHsm and only 12% of the po dose is bioavailable. More than 95% is protein bound and peak plasma concentrations are achieved in 2—3 h. Therapeutic plasma concentrations are 0.064—1.044 lg/mL. The dmg is metabolized in the Hver to 5-hyroxypropafenone, which has some antiarrhythmic activity, and to inactive hydroxymethoxy propafenone, glucuronides, and sulfate conjugates. Less than 1% of the po dose is excreted by the kidney unchanged. The elimination half-life is 2—12 h (32). [Pg.114]

Benzyltriethylammonium chloride [56-37-1] is the most widely used catalyst under strongly basic conditions. Methyltrioctylammonium chloride [5137-55-3] (Ahquat 336, Adogen 464) is probably the least expensive catalyst. Others of high activity and moderate price are tetra- -butylammonium chloride [1112-67-0] bromide [1643-19-2] hydrogen sulfate [32503-27-8], tetra- -butylphosphonium chloride [2304-30-5], and other phosphonium salts of a similar number of C atoms. Many other onium salts can also be utilized. [Pg.187]

To a mixture of naphthyloxazoline 71 (4.31 g, 12.97 mmol) in pyridine (4 mL) was added activated copper (1.99 g). The mixture was heated to reflux for 24 h then was cooled to rt, diluted with CH2CI2 and washed with aqueous ammonia until the copper had been completely removed. The organic phase was washed with water then dried over anhydrous magnesium sulfate, filtered, and concentrated to afford the title compound as a tan solid. This material was used without further purification. [Pg.246]

ANILINES, BENZYL AMINES, AND ANALOGUES An orally active local anesthetic agent that can be used as an (intiarrhythmic agent is meobenti ne (57). Its patented synthesis starts with -hydroxyphenyl nitrile and proceeds by dimethyl sulfate etherification and Raney nickel reduction to Alkylation of -methyl-dimethylthiourea with completes l.he synthesis of meobenti ne (57). ... [Pg.45]

The mixture was refluxed gently on a steam bath for VA hours. Fifteen minutes after initiating the reaction, the reaction mixture gave a negative ferric chloride test. Most of the ethanol and acetic acid were removed by distillation in vacuo, 300 ml of water and 300 ml of ether were added to the concentrate, and the mixture was shaken. The layers were separated, the aqueous layer extracted with fresh ether, and the combined ether extracts were washed with water, dried over anhydrous sodium sulfate, filtered and evaporated to dryness in vacuo. The residue was crystalli2ed by trituration with ether, and the crystals were collected by filtration, washed with hexane and dried. The mother liquors were concentrated to dryness and dissolved in a minimum amount of acetone, whereupon a second crop was obtained. The two crops were combined, dissolved in ethyl acetate, decolori2ed with activated charcoal, and recovered by concentration. [Pg.428]

Both sulfuric acid and hydrofluoric acid catalyzed alkylations are low temperature processes. Table 3-13 gives the alkylation conditions for HF and H2SO4 processes. One drawback of using H2SO4 and HF in alkylation is the hazards associated with it. Many attempts have been tried to use solid catalysts such as zeolites, alumina and ion exchange resins. Also strong solid acids such as sulfated zirconia and SbFs/sulfonic acid resins were tried. Although they were active, nevertheless they lack stability. No process yet proved successful due to the fast deactivation of the catalyst. A new process which may have commercial possibility, uses... [Pg.87]

A typical NaY zeolite contains approximately 13 wt% Na20. To enhance activity and thermal and hydrothermal stability of NaY, the sodium level must be reduced. This is normally done by the ion exchanging of NaY with a medium containing rare earth cations and/ or hydrogen ions. Ammonium sulfate solutions are frequently employed as a source for hydrogen ions. [Pg.96]

Catalytic Activity and Acidic Property of Solid Metal Sulfates Kozo Tanabe and Tsuneichi Takeshita... [Pg.425]


See other pages where Sulfate activation and is mentioned: [Pg.11]    [Pg.189]    [Pg.26]    [Pg.11]    [Pg.189]    [Pg.26]    [Pg.56]    [Pg.303]    [Pg.512]    [Pg.328]    [Pg.374]    [Pg.204]    [Pg.423]    [Pg.131]    [Pg.135]    [Pg.1809]    [Pg.123]    [Pg.62]    [Pg.458]    [Pg.23]    [Pg.155]    [Pg.61]    [Pg.289]    [Pg.161]    [Pg.232]    [Pg.287]   


SEARCH



Activation sulfation

Active sulfate

© 2024 chempedia.info