Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sugars alkylation

In recent years, the importance of aliphatic nitro compounds has greatly increased, due to the discovery of new selective transformations. These topics are discussed in the following chapters Stereoselective Henry reaction (chapter 3.3), Asymmetric Micheal additions (chapter 4.4), use of nitroalkenes as heterodienes in tandem [4+2]/[3+2] cycloadditions (chapter 8) and radical denitration (chapter 7.2). These reactions discovered in recent years constitute important tools in organic synthesis. They are discussed in more detail than the conventional reactions such as the Nef reaction, reduction to amines, synthesis of nitro sugars, alkylation and acylation (chapter 5). Concerning aromatic nitro chemistry, the preparation of substituted aromatic compounds via the SNAr reaction and nucleophilic aromatic substitution of hydrogen (VNS) are discussed (chapter 9). Preparation of heterocycles such as indoles, are covered (chapter 10). [Pg.381]

Figure 3 Supramolecular dimers, trimers, and oligomers generated by H-bonding self-assembly of (a) adenine, (b) uracil, and (c) adenine-uracil base-pair. (R = sugar, alkyl, etc.)... Figure 3 Supramolecular dimers, trimers, and oligomers generated by H-bonding self-assembly of (a) adenine, (b) uracil, and (c) adenine-uracil base-pair. (R = sugar, alkyl, etc.)...
Hydrazine and its alkylated derivatives are used as rocket fuels in organic chemistry, substituted phenylhydrazines are important in the characterisation of sugars and other compounds, for example aldehydes and ketones containing the carbonyl group C=0. [Pg.224]

Etherification. The reaction of alkyl haUdes with sugar polyols in the presence of aqueous alkaline reagents generally results in partial etherification. Thus, a tetraaHyl ether is formed on reaction of D-mannitol with aHyl bromide in the presence of 20% sodium hydroxide at 75°C (124). Treatment of this partial ether with metallic sodium to form an alcoholate, followed by reaction with additional aHyl bromide, leads to hexaaHyl D-mannitol (125). Complete methylation of D-mannitol occurs, however, by the action of dimethyl sulfate and sodium hydroxide (126). A mixture of tetra- and pentabutyloxymethyl ethers of D-mannitol results from the action of butyl chloromethyl ether (127). Completely substituted trimethylsilyl derivatives of polyols, distillable in vacuo, are prepared by interaction with trim ethyl chi oro s il an e in the presence of pyridine (128). Hexavinylmannitol is obtained from D-mannitol and acetylene at 25.31 MPa (250 atm) and 160°C (129). [Pg.51]

All l Polyglycosides. The alkyl polyglycosides (APGs) are unusual in offering a hydrophile based on natural, ie, sugar (qv), chemistry ... [Pg.252]

Acid chlorides are used for the quantitative deterrnination of hydroxyl groups and for acylation of sugars. Industrial appHcations include the formation of the alkyl or aryl carbonates from phosgene (see Carbonic and chloroformic esters) and phosphate esters such as triethyl, triphenyl, tricresyl, and tritolyl phosphates from phosphoms oxychloride. [Pg.380]

Quinolinium 2-dicyanomethylene-1,1,3,3-tetracyanopropanediide dimensions, 2, 110 Quinolinium iodide, 1-alkyl-Ladenburg rearrangement, 2, 300 Quinolinium iodide, 1-methyl-Ladenburg rearrangement, 2, 300, 335 Quinolinium iodide, [l-methyl-4-[3(5)-pyrazolyl]-blood sugar level and, 5, 291 Quinolinium perchlorate, 1-ethoxy-hydroxymethylation, 2, 300 Quinolinium perchlorate, 1-methyl-nitration, 2, 318 Quinolinium salts alkylation, 2, 293 Beyer synthesis, 2, 474 electrophilic substitution, 2, 317 free radical alkylation, 2, 45 nitration, 2, 188 reactions... [Pg.832]

Alkylation of enamines with epoxides or acetoxybromoalkanes provided intermediates for cyclic enol ethers (668) and branched chain sugars were obtained by enamine alkylation (669). Sodium enolates of vinylogous amides underwent carbon and nitrogen methylation (570), while vicinal endiamines formed bis-quaternary amonium salts (647). Reactions of enamines with a cyclopropenyl cation gave alkylated imonium products (57/), and 2-benzylidene-3-methylbenzothiazoline was shown to undergo enamine alkylation and acylation (572). A cyclic enamine was alkylated with methylbromoacetate and the product reduced with sodium borohydride to the key intermediate in a synthesis of the quebrachamine skeleton (57i). [Pg.357]

When carbon tetrabromide is used, the alkyl bromide is formed. Providing moisture is excluded from the reaction mixture (HX is formed otherwise), the reaction conditions are completely neutral, affording a convenient preparation of the halides of acid-sensitive substrates (for example, sugars). [Pg.45]

The synthesis of halodeoxy sugars has also been achieved by reaction of sugar phosphorodiamido and phosphonamido derivatives with alkyl halides (83). Heating equimolar amounts of 6-(tetraethylphosphoro-diamido)-l,2 3,4-di-0 isopropylidene-D-galactose with methyl iodide (and benzyl bromide) at 140°C. for 4 hours afforded the 6-deoxy-6-iodo (74b) (75%) and 6-bromo-6-deoxy (74c) (56%) derivatives, respectively. [Pg.186]

Alkyl halides, reaction of sugar phosphorodiamide and phosphonamide derivatives with 178... [Pg.263]

A useful variation of the Williamson synthesis involves silver oxide, Ag20, as a mild base rather than NaH. Under these conditions, the free alcohol reacts directly with alkyl halide, so there is no need to preform the metal alkoxide intermediate. Sugars react particularly well glucose, for example, reacts with excess iodomethane in the presence of Ag20 to generate a pentaether in 85% yield. [Pg.655]

Glycosides are named by first citing the alkyl group and then replacing the -ose ending of the sugar with -oside. Like all acetals, glycosides are stable to neutral water. They aren t in equilibrium with an open-chain form, and they don t show mutarotation. They can, however, be converted back to the free monosaccharide by hydrolysis with aqueous acid (Section 19.10). [Pg.989]

Alkyl glycosides. Quick to biodegrade. Made from oils and sugar. [Pg.215]

Recent progress of basic and application studies in chitin chemistry was reviewed by Kurita (2001) with emphasis on the controlled modification reactions for the preparation of chitin derivatives. The reactions discussed include hydrolysis of main chain, deacetylation, acylation, M-phthaloylation, tosylation, alkylation, Schiff base formation, reductive alkylation, 0-carboxymethylation, N-carboxyalkylation, silylation, and graft copolymerization. For conducting modification reactions in a facile and controlled manner, some soluble chitin derivatives are convenient. Among soluble precursors, N-phthaloyl chitosan is particularly useful and made possible a series of regioselective and quantitative substitutions that was otherwise difficult. One of the important achievements based on this organosoluble precursor is the synthesis of nonnatural branched polysaccharides that have sugar branches at a specific site of the linear chitin or chitosan backbone [89]. [Pg.158]


See other pages where Sugars alkylation is mentioned: [Pg.138]    [Pg.345]    [Pg.98]    [Pg.98]    [Pg.103]    [Pg.138]    [Pg.345]    [Pg.98]    [Pg.98]    [Pg.103]    [Pg.272]    [Pg.314]    [Pg.506]    [Pg.537]    [Pg.51]    [Pg.91]    [Pg.437]    [Pg.91]    [Pg.148]    [Pg.534]    [Pg.46]    [Pg.73]    [Pg.3]    [Pg.199]    [Pg.266]    [Pg.266]    [Pg.988]    [Pg.368]    [Pg.205]    [Pg.246]    [Pg.49]    [Pg.183]    [Pg.445]    [Pg.168]    [Pg.170]    [Pg.293]    [Pg.232]   
See also in sourсe #XX -- [ Pg.112 ]

See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Alkyl sugar

Alkyl sugar

Alkylations of reducing sugars

Glycosylation Methods Alkylations of Reducing Sugars

© 2024 chempedia.info