Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subunit tobacco mosaic virus

Bloomer, A.C., et al. Protein disk of tobacco mosaic virus at 2.8 A resolution showing the interactions within and between subunits. Nature TIB-. 362-368, 1978. [Pg.45]

Some virus particles have their protein subunits symmetrically packed in a helical array, forming hollow cylinders. The tobacco mosaic virus (TMV) is the classic example. X-ray diffraction data and electron micrographs have revealed that 16 subunits per turn of the helix project from a central axial hole that runs the length of the particle. The nucleic acid does not lie in this hole, but is embedded into ridges on the inside of each subunit and describes its own helix from one end of the particle to the other. [Pg.56]

A typical virus with helical symmetry is the tobacco mosaic virus (TMV). This is an RNA virus in which the 2130 identical protein subunits (each 158 amino acids in length) are arranged in a helix. In TMV, the helix has 16 1/2 subunits per turn and the overall dimensions of the virus particle are 18 X 300 nm. The lengths of helical viruses are determined by the length of the nucleic acid, but the width of the helical virus particle is determined by the size and packing of the protein subunits. [Pg.110]

An alternative approach to the production of subunit vaccines entails their direct chemical synthesis. Peptides identical in sequence to short stretches of pathogen-derived polypeptide antigens can be easily and economically synthesized. The feasibility of this approach was first verified in the 1960s, when a hexapeptide purified from the enzymatic digest of tobacco mosaic virus was found to confer limited immunological protection against subsequent administration of the intact virus. (The hexapeptide hapten was initially coupled to bovine serum albumin, used as a carrier to ensure an immunological response.)... [Pg.402]

Berger and Vanderkooi(88) studied the depolarization of tryptophan from tobacco mosaic virus. The major subunit of the coat protein contains three tryptophans. The phosphorescence decay is non-single-exponential. At 22°C the lifetime of the long component decays with a time constant of 22 ms, and at 3°C the lifetime is 61 ms. The anisotropy decay is clearly not singleexponential and was consistent with the known geometry of the virus. [Pg.131]

Many protein molecules are composed of more than one subunit, where each subunit is a separate polypeptide chain and can form a stable folded structure by itself. The amino acid sequences can either be identical for each subunit (as in tobacco mosaic virus protein), or similar (as in the a and )3 chains of hemoglobin), or completely different (as in aspartate transcarbamylase). The assembly of many identical subunits provides a very efficient way of constructing... [Pg.241]

Twofold contacts are self-homologous—formed by equivalent surfaces from each of the participating subunits, while the occasional 3-fold (e.g., bacteriochlorophyll protein), 4-fold (hemerythrin), or 17-fold (tobacco mosaic virus) contact is heterologous—formed by joining two different surfaces. An especially interesting type of het-... [Pg.244]

Subunit motion between two positions is also critical to the assembly of tobacco mosaic virus. In the partially assembled disks, having two stacked layers of 17 subunits each, the layers are wedged apart toward their inner radius. During assembly of the viral helix, RNA binds between the layers, which then clamp tightly together with 164 subunits per turn (Bloomer et al., 1978 Butler and Klug, 1978). [Pg.246]

True self-assembly is observed in the formation of many oligomeric proteins. Indeed, Friedman and Beychok reviewed efforts to define the subunit assembly and reconstitution pathways in multisubunit proteins, and all of the several dozen examples cited in their review represent true self-assembly. Polymeric species are also formed by true self-assembly, and the G-actin to F-actin transition is an excellent example. By contrast, there are strong indications that ribosomal RNA species play a central role in specifying the pathway to and the structure of ribosome particles. And it is interesting to note that the assembly of the tobacco mosaic virus (TMV) appears to be a two-step hybrid mechanism the coat protein subunits first combine to form 34-subunit disks by true self-assembly from monomeric and trimeric com-... [Pg.84]

Another complex macromolecular aggregate that can reassemble from its components is the bacterial ribosome. These ribosomes are composed of 55 different proteins and by 3 different RNA molecules, and if the individual components are incubated under appropriate conditions in a test tube, they spontaneously form the original structure (Alberts et al., 1989). It is also known that even certain viruses, e.g., tobacco mosaic virus, can reassemble from the components this virus consists of a single RNA molecule contained in a protein coat composed by an array of identical protein subunits. Infective virus particles can self-assemble in a test tube from the purified components. [Pg.102]

The other major type of symmetry found in oligomers, helical symmetry, also occurs in capsids. Tobacco mosaic virus is a right-handed helical filament made up of 2,130 identical subunits (Fig. 4-25b). This cylindrical structure encloses the viral RNA. Proteins with subunits arranged in helical filaments can also form long, fibrous structures such as the actin filaments of muscle (see Fig. 5-30). [Pg.146]

A rod-shaped plant virus. The tobacco mosaic virus (Figs. 5-41, 7-8) is a 300-nm-long rod constructed from 2140 identical wedge-shaped subunits whose detailed molecular structure is known.40 Each 158-residue subunit contains five helices and a small (3 sheet. A single strand of RNA containing 6395 nude-... [Pg.334]

Figure 7-8 (A) Electron micrograph of the rod-shaped particles of tobacco mosaic virus. Omikron, Photo Researchers. See also Butler and Klug.42 (B) A stereoscopic computer graphics image of a segment of the 300 nm long tobacco mosaic virus. The diameter of the rod is 18 nm, the pitch of the helix is 2.3 nm, and there are 16 1 3 subunits per turn. The coat is formed from 2140 identical 17.5-kDa subunits. The 6395-nucleotide genomic RNA is represented by the dark chain exposed at the top of the segment. The resolution is 0.4 nm. From Namba, Caspar, and Stubbs.47 (C) A MolScript ribbon drawing of two stacked subunits. From Wang and Stubbs.46... Figure 7-8 (A) Electron micrograph of the rod-shaped particles of tobacco mosaic virus. Omikron, Photo Researchers. See also Butler and Klug.42 (B) A stereoscopic computer graphics image of a segment of the 300 nm long tobacco mosaic virus. The diameter of the rod is 18 nm, the pitch of the helix is 2.3 nm, and there are 16 1 3 subunits per turn. The coat is formed from 2140 identical 17.5-kDa subunits. The 6395-nucleotide genomic RNA is represented by the dark chain exposed at the top of the segment. The resolution is 0.4 nm. From Namba, Caspar, and Stubbs.47 (C) A MolScript ribbon drawing of two stacked subunits. From Wang and Stubbs.46...
We have already dealt with some general aspects of biochemical self-assembly in Section 2.10 including the remarkable formation of viral capsids. There are some biochemical examples, however, that translate readily into supramolecular chemical concepts and have been pivotal in defining the field. One such system is the tobacco mosaic virus, a virus that is very harmful to a variety of crops including tobacco, tomato, pepper, cucumbers and species such as ornamental flowers. This system consists of a helical virus particle measuring some 300 X 18 nm (Figure 10.6). A central strand of RNA is sheathed by 2130 identical protein subunits, each of which contains 158 amino acids. What is remarkable about... [Pg.633]

One system that would be of interest to investigate in this respect is the protein of tobacco mosaic virus, whose subunits have been shown by Lauffer et al. (1958) to undergo an endothermic association in aqueous solution. [Pg.60]

Genes in all cellular organisms are made of DNA. The same is true for some viruses, but for others the genetic material is RNA. Viruses are genetic elements enclosed in protein coats that can move from one cell to another but are not capable of independent growth. One well-studied example of an RNA virus is the tobacco mosaic virus, which infects the leaves of tobacco plants. This virus consists of a single strand of RNA (6930 nucleotides) surrounded by a protein coat of 2130 identical subunits. An RNA-directed RNA polymerase catalyzes the replication of this viral RNA. [Pg.212]


See other pages where Subunit tobacco mosaic virus is mentioned: [Pg.118]    [Pg.198]    [Pg.98]    [Pg.143]    [Pg.200]    [Pg.283]    [Pg.285]    [Pg.159]    [Pg.192]    [Pg.333]    [Pg.245]    [Pg.80]    [Pg.343]    [Pg.348]    [Pg.1373]    [Pg.92]    [Pg.167]    [Pg.443]    [Pg.634]    [Pg.61]    [Pg.57]    [Pg.162]    [Pg.59]    [Pg.322]    [Pg.227]    [Pg.228]    [Pg.530]    [Pg.336]    [Pg.343]    [Pg.348]    [Pg.369]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Mosaic

Mosaicism

Mosaicity

Tobacco mosaic virus

Viruses tobacco mosaic virus

© 2024 chempedia.info