Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject second order

Equations (11.111) - (11.113) define a boundary value problem for a pair of simultaneous second order differential equations in and x, subject... [Pg.155]

Again it is seen that only when second order effects need to be considered does the relationship become more complicated. The dead volume is made up of many components, and they need not be identified and understood, particularly if the thermodynamic properties of a distribution system are to be examined. As a consequence, the subject of the column dead volume and its measurement in chromatography systems will need to be extensively investigated. Initially, however, the retention volume equation will be examined in more detail. [Pg.25]

In this chapter, the elution curve equation and the plate theory will be used to explain some specific features of a chromatogram, certain chromatographic operating procedures, and some specific column properties. Some of the subjects treated will be second-order effects and, therefore, the mathematics will be more complex and some of the physical systems more involved. Firstly, it will be necessary to express certain mathematical concepts, such as the elution curve equation, in an alternative form. For example, the Poisson equation for the elution curve will be put into the simpler Gaussian or Error function form. [Pg.165]

The main conclusion which can be drawn from the results presented above is that dimerization of particles in a Lennard-Jones fluid leads to a stronger depletion of the proflles close to the wall, compared to a nonassociating fluid. On the basis of the calculations performed so far, it is difficult to conclude whether the second-order theory provides a correct description of the drying transition. An unequivocal solution of this problem would require massive calculations, including computer simulations. Also, it would be necessary to obtain an accurate equation of state for the bulk fluid. These problems are the subject of our studies at present. [Pg.204]

A water body is considered to be a one-diiuensional estuary when it is subjected to tidal reversals (i.e., reversals in direction of tlie water quality parameter are dominant). Since the describing (differential) equations for the distribution of eitlier reactive or conserv ative (nomciictive) pollutants are linear, second-order equations, tlie principle of superposition discussed previously also applies to estuaries. The principal additional parameter introduced in the describing equation is a tid il dispersion coefficient E. Methods for estimating this tidiil coefficient are provided by Thomaim and Mueller... [Pg.361]

An evaluation of the retardation effects of surfactants on the steady velocity of a single drop (or bubble) under the influence of gravity has been made by Levich (L3) and extended recently by Newman (Nl). A further generalization to the domain of flow around an ensemble of many drops or bubbles in the presence of surfactants has been completed most recently by Waslo and Gal-Or (Wl). The terminal velocity of the ensemble is expressed in terms of the dispersed-phase holdup fraction and reduces to Levich s solution for a single particle when approaches zero. The basic theoretical principles governing these retardation effects will be demonstrated here for the case of a single drop or bubble. Thermodynamically, this is a case where coupling effects between the diffusion of surfactants (first-order tensorial transfer) and viscous flow (second-order tensorial transfer) takes place. Subject to the Curie principle, it demonstrates that this retardation effect occurs on a nonisotropic interface. Therefore, it is necessary to express the concentration of surfactants T, as it varies from point to point on the interface, in terms of the coordinates of the interface, i.e.,... [Pg.329]

With 77 % aqueous acetic acid, the rates were found to be more affected by added perchloric acid than by sodium perchlorate (but only at higher concentrations than those used by Stanley and Shorter207, which accounts for the failure of these workers to observe acid catalysis, but their observation of kinetic orders in hypochlorous acid of less than one remains unaccounted for). The difference in the effect of the added electrolyte increased with concentration, and the rates of the acid-catalysed reaction reached a maximum in ca. 50 % aqueous acetic acid, passed through a minimum at ca. 90 % aqueous acetic acid and rose very rapidly thereafter. The faster chlorination in 50% acid than in water was, therefore, considered consistent with chlorination by AcOHCl+, which is subject to an increasing solvent effect in the direction of less aqueous media (hence the minimum in 90 % acid), and a third factor operates, viz. that in pure acetic acid the bulk source of chlorine ischlorineacetate rather than HOC1 and causes the rapid rise in rate towards the anhydrous medium. The relative rates of the acid-catalysed (acidity > 0.49 M) chlorination of some aromatics in 76 % aqueous acetic acid at 25 °C were found to be toluene, 69 benzene, 1 chlorobenzene, 0.097 benzoic acid, 0.004. Some of these kinetic observations were confirmed in a study of the chlorination of diphenylmethane in the presence of 0.030 M perchloric acid, second-order rate coefficients were obtained at 25 °C as follows209 0.161 (98 vol. % aqueous acetic acid) ca. 0.078 (75 vol. % acid), and, in the latter solvent in the presence of 0.50 M perchloric acid, diphenylmethane was approximately 30 times more reactive than benzene. [Pg.91]

The reaction is in methanol, like iododestannylation, first-order in each reagent. The second-order rate coefficient at 23 °C was reported as 20,900 and thus the reaction occurs very much more readily than cleavage of the corresponding tin compound, which repeats the pattern observed in acid-cleavage reactions (see p. 342). The magnitude of the rate coefficient may be subject to the same error that appears to be present in the measurement of the corresponding tin compound (see footnote to Table 264) since the rates were determined under the same conditions. [Pg.385]

As a result the research emphasis in this field focused on efforts to design experiments in which it might be possible to determine to which one of the foregoing three rate equations the observed second-order rate coefficient actually corresponded. More specifically, the objective was to observe one and the same system first under conditions in which complex decomposition (fcp) was rate-determining and then under conditions in which complex formation (kF) was ratedetermining. A system in which either formation or decomposition was subject to some form of catalysis was thus indicated. In displacements with primary and secondary amines the transformation of reactants to products necessarily involves the transfer of a proton at some stage of the reaction. Such reactions are potential-... [Pg.409]

In the present section a direct method for solving the boundary-value problems associated with second-order difference equations will be the subject of special investigations. [Pg.2]

In what follows we deal everywhere with the primary family of homogeneous conservative schemes (16), (17) and (16 ), (17) as well as with linear nonnegative pattern functionals j4[ (s)] and i [/(s)] still subject to conditions (20) and (21) of second-order approximation. [Pg.159]

The reduction of Co(III) by Ag(I) in perchlorate solutions has been studied by Sutcliffe et al. Since the initial product of reaction is the very reactive Ag(Il) species, all solutions were subject to preliminary ozonolysis to remove traces of reducible impurities. The final products of reaction are Co(II) and Ag(l). Kinetic data were obtained spectrophotometrically by following the disappearance of Co(III) at 605 m/i, a small correction being applied for the absorbance of Co(ll). With Ag(I) in excess, the disappearance of Co(III) is second order, i.e., plots of the reciprocal of the corrected absorbance versus time are linear. The rate is directly proportional to the concentration of Ag(I), and inversely proportional to the square of the concentration of Co(II). These results can be understood in terms of the mechanism... [Pg.220]

Both reaction paths are acid-catalysed and are subject to retardation by specific ions probably by removal of free Br . The second-order dependence with respect to reductant has several precedents, e.g. Fe(iri) oxidation of 1 and Mn(III) oxidation of HN3. The acid catalysis results from suppression of the hydrolysis to MnOH which is ineffective in this oxidation. [Pg.358]

The Ce(IV) oxidation of arsenite has been examined in various acids for which the sequence of rates is HCIO4 >HN03 > H2S04 . The kinetics are simple second order. E in HCIO4 is 9.55 kcal.mole . The chief kinetic interest in this reaction is, however, centred on its remarkable acceleration on addition of minute quantities of iodine , Ru(IV) °- Ru(VI) or Os(Vni) The kinetics are complicated and although catalysis is not the subject of this review, the above references have been included. [Pg.371]

The tendency for N-nitrosamides to undergo hydrolysis by a nucleophilic catalysed pathway has been confirmed by studies of N-alkylnitroso acetamides (22) Results summarised in Table I for N -n-butyl-JJ -nitroso acetamide show that its decomposition is also subject to steric constraints (2,6-lutidinestrong nucleophiles (eg. imidazole, thiols) irrespective of their base strength (pK ). Further, the second order dependence on [Imidazole] is more clearly defined for the decomposit-... [Pg.106]

The role of biocatalysis in two-phase systems has many parallels with the subject we have covered under extractive reactions. It appears that a two-phase system was originally considered for transformations of water insoluble substances like steroids. Now, a series of treatises are available which teach us that the maximum value of the apparent equilibrium constant for a second-order reaction in a two-phase system can exceed the equilibrium... [Pg.161]

This second-order differential equation is subject to the boundary conditions ... [Pg.440]

Diphenyl cyclopropenone has been subjected to nitration217 and bromina-tion218 in sulphuric acid. According to the second order functionality of the cyclopropenone substituent electrophilic substitution of the phenyl residues took place at the m-position giving rise to 313. [Pg.73]

Let us calculate the frequencies of transitions between Zeeman eigenstates s) and r), assuming that the nuclei are only subjected to an isotropic chemical shift and the first- and second-order quadrupolar interaction. As seen in Sect. 2.1, the Hamiltonian that governs the spin system in the frame of the Zeeman interaction (the rotating frame) is... [Pg.128]

Molecularlv Doped Thermotropic Liquid Crystalline Polymer. The idea of the nonlinear optical medium which is the subject of this paper results from a synthesis of the ideas of the discussion above and a few concepts from nonlinear optical molecular and crystal physics. As discusssed several places in this volume, it is known that certain classes of molecules exhibit tremendously enhanced second-order... [Pg.112]


See other pages where Subject second order is mentioned: [Pg.679]    [Pg.352]    [Pg.142]    [Pg.309]    [Pg.285]    [Pg.465]    [Pg.84]    [Pg.84]    [Pg.131]    [Pg.4]    [Pg.93]    [Pg.121]    [Pg.464]    [Pg.127]    [Pg.46]    [Pg.191]    [Pg.234]    [Pg.141]    [Pg.145]    [Pg.214]    [Pg.156]    [Pg.319]    [Pg.349]    [Pg.444]    [Pg.452]    [Pg.151]    [Pg.151]    [Pg.152]    [Pg.389]    [Pg.140]    [Pg.482]   
See also in sourсe #XX -- [ Pg.58 , Pg.60 , Pg.488 ]




SEARCH



Order Subject

Subject ordering

© 2024 chempedia.info