Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject generation

These marginal costing approaches to costing steam are unsatisfactory. Within operating companies, few subjects generate more controversy than the value placed on different steam levels. [Pg.412]

An important aspect of the evaluation, and possible retraining of wheelchair users is to determine the optimal stroke kinetics and kinematics [2]. However, there is typically some degree of variation from one stroke to another. Wheelchair propulsion kinematic data are typically cyclic (i.e., a person repeats or nearly repeats his/her arm motions over several strokes). Each marker of the kinematic model (e.g., shoulder, elbow, wrist, knuckle) of each subject generates an x and y set of data which is periodic. The frequencies... [Pg.1143]

With the resources of the situation, mth its multiples, its language, the subject generates names whose referent is in the future anterior this is what supports belief. Such names will have been assigned a referent, or a signification, when the situation will have appeared in which the indiscernible—which is only represented (or included)—is finally presented as a truth in the first situation. ... [Pg.59]

Most recovery boilers use 63,5 mm OD carbon steel tubes in the generating bank. With a few exceptions these tubes are swaged at the ends to 50,8 mm. When the 63,5 mm raw tube is manufactured it is subject to a lot of specifications i.e. ASME. There are no specifications for the swaged end of the tube. This is unfortunate as the swaged part of the tube is subjected to further mechanical deformation dtuing the rolling procedure and is located in a wastage zone of tire recovery boiler. [Pg.1034]

Kramers solution of the barrier crossing problem [45] is discussed at length in chapter A3.8 dealing with condensed-phase reaction dynamics. As the starting point to derive its simplest version one may use the Langevin equation, a stochastic differential equation for the time evolution of a slow variable, the reaction coordinate r, subject to a rapidly statistically fluctuating force F caused by microscopic solute-solvent interactions under the influence of an external force field generated by the PES F for the reaction... [Pg.848]

Figure 9-26 shows a typical GA run in a first step, the original population is created. For each chromosome the fitness is determined and a selection algorithm is applied to choose chromosomes for mating. These chromosomes are then subject to the crossover and the mutation operators, which finally yields a new generation of chromosomes. [Pg.467]

We can now proceed to the generation of conformations. First, random values are assigne to all the interatomic distances between the upper and lower bounds to give a trial distam matrix. This distance matrix is now subjected to a process called embedding, in which tl distance space representation of the conformation is converted to a set of atomic Cartesic coordinates by performing a series of matrix operations. We calculate the metric matrix, each of whose elements (i, j) is equal to the scalar product of the vectors from the orig to atoms i and j ... [Pg.485]

Variational methods - theoretically the variational approach offers the most powerful procedure for the generation of a computational grid subject to a multiplicity of constraints such as smoothness, uniformity, adaptivity, etc. which cannot be achieved using the simpler algebraic or differential techniques. However, the development of practical variational mesh generation techniques is complicated and a universally applicable procedure is not yet available. [Pg.195]

In this chapter, we shall use the principle of least squares to generate the equation of a unique curve for any given set of x-y pairs of data points. The ciu ve so obtained is the best fit to the points subject to... [Pg.59]

At the top of File Segment 5-1 is a heat of fomiation information block. Two sums are listed One is a sum of nomial bond enthalpies for ethylene, and the other is a sum selected from a parameter set of stiainless bonds. Both sets of bond enthalpies have been empirically chosen. A group of molecules selected as nomial generates one parameter set, and a group supposed to be strainless is selected to generate a second set of str ainless bond enthalpies designated SBE in Eile Segment 5-1. The subject of parameterization has been treated in detail in Chapter 4. See Computer Projects 3-6 and 3-7 for the specific problem of bond enthalpies. [Pg.145]

Addition of several organomercury compounds (methyl, aryl, and benzyl) to conjugated dienes in the presence of Pd(II) salts generates the ir-allylpalladium complex 422, which is subjected to further transformations. A secondary amine reacts to give the tertiary allylic amine 423 in a modest yield along with diene 424 and reduced product 425[382,383]. Even the unconjugated diene 426 is converted into the 7r-allyllic palladium complex 427 by the reaction of PhHgCI via the elimination and reverse readdition of H—Pd—Cl[383]. [Pg.82]

Control of sonochemical reactions is subject to the same limitation that any thermal process has the Boltzmann energy distribution means that the energy per individual molecule wiU vary widely. One does have easy control, however, over the energetics of cavitation through the parameters of acoustic intensity, temperature, ambient gas, and solvent choice. The thermal conductivity of the ambient gas (eg, a variable He/Ar atmosphere) and the overaU solvent vapor pressure provide easy methods for the experimental control of the peak temperatures generated during the cavitational coUapse. [Pg.262]

Two main operational variables that differentiate the flotation of finely dispersed coUoids and precipitates in water treatment from the flotation of minerals is the need for quiescent pulp conditions (low turbulence) and the need for very fine bubble sizes in the former. This is accompHshed by the use of electroflotation and dissolved air flotation instead of mechanically generated bubbles which is common in mineral flotation practice. Electroflotation is a technique where fine gas bubbles (hydrogen and oxygen) are generated in the pulp by the appHcation of electricity to electrodes. These very fine bubbles are more suited to the flotation of very fine particles encountered in water treatment. Its industrial usage is not widespread. Dissolved air flotation is similar to vacuum flotation. Air-saturated slurries are subjected to vacuum for the generation of bubbles. The process finds limited appHcation in water treatment and in paper pulp effluent purification. The need to mn it batchwise renders it less versatile. [Pg.52]

Another hydrogenation process utilizes internally generated hydrogen for hydroconversion in a single-stage, noncatalytic, fluidized-bed reactor (41). Biomass is converted in the reactor, which is operated at about 2.1 kPa, 800°C, and residence times of a few minutes with steam-oxygen injection. About 95% carbon conversion is anticipated to produce a medium heat value (MHV) gas which is subjected to the shift reaction, scmbbing, and methanation to form SNG. The cold gas thermal efficiencies are estimated to be about 60%. [Pg.25]

The residual shear stress distribution in the assembled cylinders, prior to the appHcation of internal pressure, may be calculated, from pressure P, generated across the interface. The resulting shear stress distribution in the compound cylinder, when subjected to an internal pressure may be calculated from the sum of the residual stress distribution and that which would have been generated elastically in a simple cylinder of the same overall radius ratio as that of the compound cylinder. [Pg.82]


See other pages where Subject generation is mentioned: [Pg.282]    [Pg.312]    [Pg.132]    [Pg.130]    [Pg.242]    [Pg.121]    [Pg.58]    [Pg.258]    [Pg.282]    [Pg.312]    [Pg.132]    [Pg.130]    [Pg.242]    [Pg.121]    [Pg.58]    [Pg.258]    [Pg.713]    [Pg.2257]    [Pg.2732]    [Pg.2853]    [Pg.478]    [Pg.358]    [Pg.447]    [Pg.475]    [Pg.492]    [Pg.494]    [Pg.496]    [Pg.556]    [Pg.556]    [Pg.59]    [Pg.149]    [Pg.158]    [Pg.261]    [Pg.69]    [Pg.164]    [Pg.244]    [Pg.34]    [Pg.268]    [Pg.269]    [Pg.484]    [Pg.190]    [Pg.85]   
See also in sourсe #XX -- [ Pg.376 ]

See also in sourсe #XX -- [ Pg.273 ]

See also in sourсe #XX -- [ Pg.273 ]

See also in sourсe #XX -- [ Pg.273 ]

See also in sourсe #XX -- [ Pg.549 ]




SEARCH



© 2024 chempedia.info